
www.manaraa.com

NOTE TO USERS

This reproduction is the best copy available.

®

UMI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Impact of a Pre-Programming Course in
Computer Science Curriculum

Robert James Faux
ID 109462

December 6,2003

Project Demonstrating Excellence
(Dissertation)

Submitted in partial
fulfillment of the requirements for the degree

Doctor of Philosophy in Interdisciplinary Studies
with a specialization in Computer Science Education

at The Union Institute and University

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

UMI Number: 3160272

Copyright 2005 by

Faux, Robert James

All rights reserved.

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3160272

Copyright 2005 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

Table of Contents

1 Problem Statement and Context...4
1.1 Abstract 4
1.2 Project Summary ..5
1.3 Research Question ..12
1.4 Scope and Limitations...14
1.5 Original Contribution ..20
1.6 Social Relevance ... 21
2 Intellectual Context .. 23
2.1 Summary of Topic Scope.. 23
2.2 History of Curricular Change in Introductory Computer Science 25
2.3 Introduction to Computer Science... 27
2.4 Related Computer Science Education Research............................34
2.5 Context within Body of Knowledge...42
3 Methods ...45
3.1 Research Design: Study Structure..45
3.2 Research Design: Sample.. 58
3.3 Research Design: Variables... 64
3.4 Research Design: Data Collection Tools..76
3.5 Responsibilities of Participants... 89
3.6 Review Processes ..91
4 Findings ...93
4.1 General Observations... 93
4.2 Demographics ..96
4.3 Pretest and Posttest Data..107
4.4 Self-Evaluation Data ..118
4.5 CSO Satisfaction Data..124
4.6 Qualitative Data ..125
5 I nterpretations and Analysis.. 131
5.1 Sample Representation of Population.. 131
5.2 Analysis of Programming Skill Learning....................................... 134
5.3 Analysis of Self-Evaluation Skills.. 142
5.4 Analysis of CSO Satisfaction Levels.. 147
5.5 Data Mining Analysis ..151
5.6 Qualitative Analysis ..168
5.7 Interpretation of Findings...172
5.8 Summary of Findings..176
5.9 Recommendations for Future Research....................................... 180
6 Bibliography ...182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

Appendices
I. New Curriculum Materials
II. Demographics Data Collection Tool
III. Exit Survey Data Collection Tool
IV. Pretest Data Collection Tool
V. Posttest Data Collection Tool
VI. Informed Consent Form
VII. Instructor Information
VIII. Union Institute & University Institutional Review Board Materials
IX. Minnesota State University (MSU) - IRB Materials
X. Bemidji State University (BSU) - IRB Materials
XI. BSU Data
XII. Data Mining Samples

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

4

1 Problem Statement and Context

1.1 Abstract
Impact of a Pre-Programming Course in a Computer Science Curriculum

The value of integrating problem solving, algorithm development,

algorithm testing, pseudocode, and diagramming techniques into

introductory computer science courses has not been quantified in past

research. It was hypothesized that the introduction of problem solving and

algorithm development topics prior to the introduction of a programming

language would reduce the learning curve requirements and increase the

success rate for beginning programmers. Existing research suggests that

advance organizers may aid learning tasks; this research seeks to confirm

whether the addition of algorithm development concepts to the

introductory curriculum serve as appropriate organizers for programming

learning.

Supplementary materials were developed and used in a typical breadth-

first, introductory computer science course (CSO). Weak treatment

(control) and strong treatment (treatment) cohorts were tracked through

their experiences in the subsequent programming course (CS1). The data

collected in the CS1 course followed a standard treatment-posttest-

posttest study format, with the treatment occurring in the CSO course.

Baseline problem solving skills, demographic information, and satisfaction

ratings were collected at the beginning of the CS1 course and were paired

with programming skill and satisfaction ratings at the end of that course.

Quantitative data analysis revealed that posttest programming scores for

like tests exhibited no significant difference within the sample. However,

there was an observed difference with the treatment group performing

better than the control group. Specifically, members of the treatment

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 5
Robert J Faux, ID 109462

group reported a better experience than the control in the introductory

(CSO) course, with significantly different results between groups on a

standard Lickert scale. Similarly, the treatment group expressed opinions

in qualitative evaluations that supported the conclusions suggested by

scaled results. Treatment group members used pseudocode more

consistently and applied diagramming concepts to aid in writing code

during their posttest experience. Triangulation provided consistent results,

which indicated that treatment group participants successfully applied

algorithm development processes as part of a programming strategy. In

contrast, control group members cited shortcomings in the original

introductory curriculum that were directly addressed by the new approach.

This confirms experiential and anecdotal evidence that suggests that prior

learning of algorithm development skills can have a positive impact on

programming learning.

1.2 Project Summary
1.2.1 Introduction

There is no consensus among computer science educators concerning

what approaches serve students best in early learning stages (Walker and

Schneider, 1996). Current guidelines for the introductory sequence in

computer science programs provide multiple models for curriculum

development (Computing Curriculum, 2001), which reflects this

uncertainty. Unfortunately, the current body of knowledge in computer

science education is relatively new and largely incomplete (Clancy,

Stasko, Gudzial, et a/., 2001). Other than a growing source list outlining

curricular innovations, supporting arguments, and anecdotal results, there

is insufficient data to support any particular approach as a ‘best practice.’

A corollary to the introductory sequence is how computer science

disciplines can best support programming learning within the curriculum.

It has become clear that current approaches are not consistently

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 6
Robert J Faux, ID 109462

successful in developing capable programmers, despite evidence that

many curricula have been modified and simplified in an attempt to

facilitate learning for a broader base of students (Tucker, Keleman and

Bruce, 2001). Thus, there is a need for research to help establish

processes that simplify the learning curve in regard to programming

without lowering expectations for achievement. It is equally important that

any efforts to support programming learning avoid perpetuating the myth

that programming and computer science are one and the same (Powers

and Powers, 2001). A successful approach should reflect the reality that

programming is simply one of a broad set of tools in the discipline.

This project focused on the integration of beginning problem-solving and

algorithm development techniques into introductory computer science pre

programming (CSO) courses. It was hypothesized that there would be a

measurable improvement in student learning during subsequent first

programming (CS1) courses as a result of the successful implementation

of the new CSO curriculum. The content and structure of similar pre

programming courses at Bemidji State University (BSU) and Minnesota

State University at Mankato (MSU) were modified with supplementary

problem-solving, pseudocode, diagramming, teamwork, and algorithm

testing units. The effects of this change on learning in the subsequent first

programming course was investigated in conjunction with the curricular

alterations. The sample population consisted of students attending CSO

and CS1 courses offered by the Computer and Information Sciences

departments at these schools during the three-term duration of the study.

Students who attended the CSO course prior to curricular alterations

comprised the control group. The treatment group consisted of students

who attended the course after alterations were made.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

7

1.2.2 Study Goals

The main purpose of this research project was to measure the impact

isolated curricular content change in the introductory (CSO) course had on

the first programming course (CS1). General works on cognition and

learning suggest that the identification and use of proper advanced

organizers can provide significant support for future learning in any given

discipline (Ausubel, 1968). The curricular changes selected were believed

to be key concepts that provide advanced organizers for and promote

success in programming, as well as in general computer science problem

solving. A candidate set of advanced organizers was used to modify the

CSO curriculum, and these changes were isolated by limiting other

. curricular changes between the control and treatment groups. Although it

is possible that this set of organizers could benefit a broad range of

computer science learning topics, the scope of this study was limited to

the impact these changes had on programming learning. The intent was

to determine whether students were more or less likely to achieve success

in implementing programming tasks as a result of the emphasis on

specific advanced organizers in the curriculum. Participants in the

programming course completed a problem-solving pretest at the beginning

of the CS1 course to provide baseline scores intended to measure

incoming ability levels. A programming posttest was completed at the end

of the CS1 course to measure the actual level of programming skill

attained by the end of this course. The results of these tests provided an

important data set for determining the success of the newly modified

curriculum in supporting programming learning.

Evidence of success in learning is very difficult to measure and can suffer

from the subjective nature of evaluation. In addition, numerous external

variables impact learning in field research in education. Therefore,

corroborating evidence was gathered to supplement the results gathered

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 8
Robert J Faux, ID 109462

in the testing process. Components of programming success (as paired

with baseline ability), CSO course satisfaction, self-capability ratings, and

problem-solving approaches employed on the tests were used to

triangulate the data collected.

Students’ satisfaction with a course, learning event, or topic area can have

an impact on the amount of learning that occurs in that course and in

subsequent, related courses (Ben-Ari, 2001). Therefore, data were

collected on general satisfaction, subject importance, and students’

perception of the applicability and/or usefulness of the CSO course. This

was measured by collecting qualitative satisfaction statements and ratings

based on a traditional Lickert-type scale at the beginning and the end of

the CS1 course. A particular focus was the student’s perception of how

CSO and CS1 related to each other, since the relationship between the

introductory course and programming learning was the focus of the

research. It was believed that significantly different responses between

the control and treatment groups would constitute an indication that the

curricular changes had some impact in providing an overall framework for

the CSO course that enhanced future learning.

Since students’ perceived comfort with a subject and their expectations for

success are often what will foster actual success or failure (Bay and

Daniel, 2003), data were gathered with respect to each participant’s

comfort level in the areas of computing, mathematics, problem-solving,

and programming. Information on these areas was collected as ratings on

a Lickert-type scale at both the beginning and the end of the CS1 course.

The first three ratings provided a baseline, which was not expected to

change over the time interval or across groups. The programming rating

was expected to change for both groups in response to the content of the

CS1 course; however, data were collected to determine if there was a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 9
Robert J Faux, ID 109462

significant difference in self-reported improvements in ability between the

control and treatment groups.

Finally, qualitative observations were made to analyze the approaches

used for problem-solving on both the pretest and the posttest.

Participants were encouraged to ‘show their work’ on both tests in both

groups. This additional work was coded in order to identify trends in

approach and determine if there were correlations between levels of

success and particular methods. Evidence that advanced organizers from

the CSO course were being used was expected to provide confirmation

that a connection between the organizer and the targeted learning event

had been made.

1.2.3 Summary of Curricular Alterations
Although the broad coverage of a CSO course in a breadth-first model

intentionally avoids devoting too much time to any one subject, it is the

researcher’s opinion that problem-solving and algorithm development

provide an important foundation for much Computer Science subject

material and study. Therefore, the curriculum for the treatment CSO group

was modified to strengthen and emphasize this topic area.

Many subject areas require problem-solving skills, but few require

competence in this area to the degree that Computer Science does (Cook,

1997). The development of algorithms and their implementation in a

programming language, in particular, relies heavily on problem-solving

techniques (Ramalingam and Wiedenbeck, 1998). Since many students

who enter post-secondary Computer Science programs have had minimal

background and training with problem-solving techniques, coverage of

problem-solving in the CSO course curriculum was expanded. General

problem-solving skills were included to provide a foundation for the

development of more specific computer science problem-solving skills.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

10

One common method for expressing the form of an algorithm in a manner

that does not rely on a programming language structure is pseudocode.

The existing CSO courses defined the concept of algorithms and illustrated

pseudocode examples for the student; however, algorithms development

was not addressed much beyond this. The revised curriculum expanded

the focus on pseudocode, encouraged the application of pseudocode use,

and included a section on testing algorithms once they are written. The

addition of testing was intended to encourage reflection once the student

developed a candidate algorithm for use.

Diagramming techniques are one tool that provides students with a

chance to visualize an algorithm (Naps, Rossling, Almstrum, et al., 2002).

In fact, pictures or diagrams frequently provide visual stimuli that support

problem-solving, which is not the case with pseudocode. Simple

diagramming techniques such as flow charts can supplement problem

solving, algorithm development, and pseudocode learning by giving

students another tool. The inclusion of diagramming techniques in the

CSO curriculum was intended to increase the breadth of instructional

methods and make the topic accessible to a wider range of students.

Collaboration is an important aspect of problem-solving, so team

development often becomes a vital component of the undergraduate

degree program (Powers, 2002). The team development section was

included in the enhanced curriculum to promote successful collaboration

in problem-solving, algorithm development, and testing. Furthermore, the

emphasis on collaboration was intended to foster an appreciation of the

importance of communicating ideas and designs to others.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

11

1.2.4 Summary of Study Approach

The experimental design for this project represented a primarily

exploratory piece of research for which a hypothesis, two subordinate

hypotheses, and their corresponding null hypothesis were evaluated. This

was a self-control study; participants were not randomly assigned to

groups, and the control and treatment groups were not measured

concurrently. The research was longitudinal in nature, with the progress

of participants being monitored for a term and the contact with each group

lasting through one school year (two academic terms). Descriptive

research techniques were used in the demographic and exit survey data

collection tools to provide evidence pertaining to the validity and reliability

of data collected in this project.

This study follows a treatment - posttest - posttest design that tracks the

progress of two cohorts during their attendance in CSO and CS1 courses

at the subject post-secondary schools. The first posttest is referenced as

a pretest in this document because it occurred at the beginning of the CS1

course, in spite of the fact that it was given after the CSO course. This

design was derived from the base structure for nonequivalent control

group designs provided by Cook and Campbell (1979). According to their

definitions, this study constitutes a weak treatment versus a strong

treatment structure, since both sets of individuals did receive some

instruction about algorithms and problem-solving. Similarly, the groups

will be called control and treatment groups for clarity and consistency.

In an effort to address external variables, data triangulation was

employed. Data were collected on achievement, self-comfort ratings with

related tasks, course satisfaction and applicability data, pertinent

demographic data, and qualitative observational data from both

achievement tests. Analysis triangulation was accomplished by combining

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 12
Robert J Faux, ID 109462

traditional paired analysis statistical methods, data mining methods, and

qualitative analysis approaches.

There was no control over the selection of members for the treatment or

control group; however, the structure of the study precluded a purely

random selection of members in each group. Students were not informed

that the content of the CS1 courses differed, and there was no concurrent

difference in the CSO courses. Since the control group had completed the

CSO course in an academic term prior to the treatment group, each group

represented an entire class of students moving through the computer

science curriculum for a given period of time. This followed a typical

cohort design, except that it was possible for members of the control

group to attend the CS1 course with treatment group members if they

delayed continuation of their studies by a term. Students fitting this

description were not included in the research population. In order to

determine if the groups were representative of the sample population,

demographic information was collected and compared to school and

discipline norms.

1.3 Research Question
Will the integration of a set of algorithm development concepts and
problem-solving techniques into a pre-programming computer science
course impact the learning of programming skills and application of
problem-solving skills in the first programming course for post-secondary
institution students?

1.3.1 Population
The purpose of this research project was to determine whether the

integration of a set of beginning algorithm development concepts and

problem-solving techniques at the beginning of a computer science

curriculum would support improved learning for college-aged students. In

this document, college-aged students were defined as all persons who

were at least 17 years old. Based on school admission policies,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 13
Robert J Faux, ID 109462

participants in these courses were presumed to hold a high school

diploma or equivalent and to possess sufficient knowledge of prerequisite

material. Terminology and assumptions for post-secondary students were

based on the academic model utilized in the United States, although it

seems reasonable to map terms to school systems in other countries.

The target population consisted of persons interested in Computer

Science courses and learning. In particular, this research focused on

students in CSO and CS1 courses in typical four-year computing degree

programs. The sample population from which the study sample was

drawn was the subset of students enrolled in post-secondary classes at

the Bemidji State University (BSU) and Minnesota State University at

Mankato (MSU) campuses. The study sample consisted of registered

students in courses with participating instructors.

1.3.2 Curricular Modifications
The set of concepts and techniques integrated into the pre-programming

course was intended to introduce students to the basics of algorithm

development and problem-solving. These topics were selected because

they were expected to have a direct impact on future learning in computer

science and, in particular, programming learning. Treatments of

diagramming, pseudocode, team development, algorithms, test plans,

documentation, requirements gathering, control structures, variables,

abstraction, and modularity were included in the pre-programming course.

The control group had exposure to pseudocode, algorithms, modularity,

control structures, and variables. For the treatment group, the existing

topics were extended or refocused to include the other areas of

concentration (diagramming, algorithm testing, and team development, as

well as requirements gathering, documentation, and abstraction for

problem-solving).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

14

1.3.3 Measurements of Learning
The primary targeted learning skill measured in this research project was

programming competence. The posttest provided participants with an

opportunity to exhibit the skills they had acquired at the end of the CS1

course. In order to take'prior skill levels into account, a pretest was used

to collect baseline information that could be paired with the posttest data.

In addition to these data collection tools, participants were asked to

complete a self-evaluation that addressed problem-solving, computing

skills, math skills, and programming skills. This information was used to

corroborate the information provided by their performance on the tests.

These data points were further supplemented by measurements of

satisfaction for the CSO course, and qualitative information captured

through questionnaires given at both the beginning and the end of the

CS1 course.

1.4 Scope and Limitations
Curricular modifications were isolated as much as possible in order to

determine their impact on early programming skill development. Although

findings here do not provide unqualified support for the contention that

CSO modules are inherently critical for success in CS1 modules, incidental

support for this contention is warranted. This research supports the

development of a more effective CSO curriculum for programs that adopt a

breadth-first strategy for early Computer Science learning. It also

encourages those educators who advocate a breadth-also or depth-first

approach to consider expanding coverage of these concepts prior to

actual programming learning.

1.4.1 Curricular Change Limitations
In order to determine candidate topics for inclusion in the modified course,

the existing curriculum for both participating institutions (BSU and MSU)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 15
Robert J Faux, ID 109462

were evaluated. The course structure for both programs was based upon

materials found in Schneider and Gersting’s An Invitation to Computer

Science (1999). Chapters one through five and chapter fourteen of this

textbook constituted the framework for teaching and learning during the

semester for both programs. These chapters included introductions to

algorithms, pseudocode, control structures, algorithm efficiency, hardware

concepts, and ethics in computing. All topics were addressed in a manner

that was exclusive of programming languages. Faculty at BSU and MSU

considered mastery of these concepts to be critical for success in their

computing majors and minors; therefore, these topics could not be

removed, nor could the time allotted to these subjects be reduced.

Participating instructors agreed that three to four weeks of the fifteen-week

semester were available for additions to the core content (outlined above)

for this course.

1.4.2 Curricular Modifications
The existing course was modified by adding beginning problem-solving

techniques, diagramming methods, team development, testing algorithms,

and some rudimentary software engineering concepts to existing course

topics. Algorithm and pseudocode discussion in the existing pre

programming course was supplemented with diagramming techniques for

problem-solving and algorithm development. Although numerous formal

diagramming techniques exist, students were exposed to informal

diagramming processes that used flow charts and structure charts as

problem-solving tools. A section dedicated to test plans for algorithms

was developed to provide an appropriate transition from algorithm

development to algorithm efficiency. This promoted the use of project

scope identification and early problem discovery in the solution

development process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 16
Robert J Faux, ID 109462

Diagramming methods and test plans for algorithms further emphasized

the importance of algorithm development as a vital aspect of computer

science. A segment on team development and team member roles

provided a useful supplement to the professional ethics portion of this

course and was created to support positive collaboration in computer

science learning. Finally, a small additional segment provided students

with an introduction to the basic concepts of software engineering, which

tied the previous concepts together into the ‘big picture’ of software

development. Topics in chapter seven of the text (Schneider and

Gersting, 1999) were utilized for this segment, but the material was

modified to exclude programming specific content. Software engineering

topics included abstraction, modularity, requirements gathering, and

documentation.

In summary, the curriculum changes to the pre-programming course were:

1. Problem-solving Techniques

2. Diagramming techniques

3. Test plans for algorithms

4. Abstraction and modularity concepts

5. Collaboration methods

1.4.3 CS1 and Program-Wide Curricular Framework
The first programming course at MSU and BSU was not altered in content.

The existing programming courses utilized the Java language (MSU) or

the C++ language (BSU) and included topics from beginning programming

to intermediate data structures and programming. Instructors at both

colleges indicated that no significant changes (other than normal

semester-by-semester or instructor-by-instructor differences) occurred in

the CS1 course during the time frame of this research project. Both

programs utilized the breadth-first model for the introductory computer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 17
Robert J Faux, ID 109462

science curriculum, and both had moved from a depth-first model at least

two years prior to the inception of this study.

1.4.4 Data Collection Points

The relative success of students in the CS1 course based on their

exposure to either the non-modified or the modified CSO curriculum in the

pre-programming course was evaluated. In other words, the treatment for

this research occurred in the pre-programming course and data collection

occurred in the programming course. In order to facilitate data collection,

instructors were asked to implement two data collection instruments on

the first day of the programming course. Data points collected at this time

included basic demographic information, students’ initial self-evaluation of

skill, initial evaluation of the CSO course, and a pretest used to determine

a problem-solving baseline for students in the course. In addition,

instructors were asked to implement two additional data collection tools

near the end of their course. These data points included new evaluations

of skills, new evaluation marks for the CSO course, and posttest results

that assessed programming skills. All test materials were implemented

separately from graded materials, and students were informed that these

results had no impact on their standing in the course. All completed

measurement tool materials were submitted to the instructors, who then

forwarded the unprocessed materials to the researcher.

In summary, the data collection devices utilized in the programming

course were:

1. Demographic/Entry survey (beginning of CS1)

2. Pretest questions (beginning of CS1)

3. Posttest questions (end of CS1)

4. Exit survey (end of CS1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

18

1.4.5 Presentation of the Modified Curriculum
Curriculum modifications consisted of written materials in the form of

lecture notes, exercises, and examples that were made available to CSO

instructors. Students were also able to view all materials via an online

website. These materials occasionally included suggested activities or

group tasks; however, the method of presentation of the new or existing

course materials by the participating instructors was not dictated. The

inclusion of these new materials and modifications represent the full extent

of control exercised on the instructors, who were otherwise free to choose

their own instructional methods. The instructor remained the same for

both the control and treatment groups in the CSO course, which lessened

the impact of instructional differences.

Instructors differed in the CS1 courses, although it was understood that

the curriculum in that course would remain the same for each section.

These instructors were only asked to perform data collection tasks during

the term. No effort was made to encourage faculty members to alter their

teaching in this course, nor was data collected about their teaching styles

or competence.

1.4.6 Participating Schools
Two separate entities, Bemidji State (BSU) and Minnesota State at

Mankato (MSU), were involved in this research project. The researcher

was not affiliated with either organization during the project duration, and

was not present at either school during the process. BSU is the smaller of

the two schools and commonly held one or two sections of both CSO and

CS1 each semester. The instructor for CS1 differed for each term in

which measurements were taken. The CSO instructor remained a

constant, although it was possible that some members of the control group

had attended the CSO course in a much earlier term. MSU is a much

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 19
Robert J Faux, ID 109462

larger school and runs multiple sections of both courses each term. The

CSO instructor remained constant while the CS1 instructors differed. The

CS1 sections represented a subset of all CS1 sections in the school, since

the sample only contained students in sections with faculty members who

had agreed to participate in this study.

Data collected from the BSU campus was sufficiently clean to allow paired

analysis of collected data points, so information from this school was used

in the data analysis process. The MSU data was not analyzed, since data

collected for the control group could not be successfully paired due to the

use of multiple student identifiers at the beginning and end of the course.

Failure to obtain a control group for this school made the inclusion of

paired data in the treatment group impossible, and precluded the use of

the data obtained.

The research population consisted of students enrolled in pre

programming courses at BSU and MSU during the Spring 2000 and Fall

2000 semesters. Learning was measured for these students in the first

programming course during the Fall 2000 and Spring 2001 semesters.

1.4.7 Motivation for this Study
The researcher believes that the integration of problem-solving techniques

and algorithm development tools early in the learning of computer science

enhances the acquisition, retention, and application of computer science

concepts. Experiential knowledge, acquired as a computer science

instructor, indicates that most students need to be given tools to solve

problems, to design solutions, and to test these solutions. If taught early

in the curriculum, these tools could be useful to students as they learn to

program and participate in the development of large projects for their

coursework.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

20

1.5 Original Contribution
Measuring the effectiveness of content changes to the pre-programming

course supplements the current body of knowledge in computer science

education. There has been a long-standing dialogue among educators

with respect to introductory course approaches. The incorporation of

algorithm development tools and problem-solving techniques at such an

early stage in a degree program is not an entirely new approach, but

controlled studies in this area do not currently exist. Therefore,

proponents of this approach have very little to support their case other

than their own classroom experience. While such experience is valid in its

own right, it is difficult to initiate the implementation of these ideas without

data to substantiate the claims. In addition to providing some support for

this specific modification in curricula, it is hoped that this study will inspire

future research on approaches to teaching computer science to new

students.

Many studies that exist on this topic--such as McCauley and Jackson

(1999), Bouvier (2003), and Apple and Nelson (2002)--tend to be

incidental studies that fall prey to many design problems. This research

brings additional strength to the data by providing direct evaluation of

student accomplishment through a design using data and analysis

triangulation. Additionally, the evaluation of learning took measurements

that were not subject to the bias and pressures of course grades. For

example, the instructor of record did not rate answers, so there were no

additional data points with respect to a given student that might have

affected assessment. Triangulation was employed to provide a more

concrete and independent indication of curricular impact on learning for

the individual. Most studies in computer science education use the results

of existing graded events and existing curriculum materials. This research

differs in that the data collection tools were not part of the course and the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

21

‘treatment’ to the course came from a source outside of the organization

that used it.

Computing professionals are likely to agree that the abilities to problem

solve, pattern match, and develop structured solutions are vitally important

in the field of computer science. The development of algorithms is

relevant in hardware design, software design, database design, and most

other computing related development fields. This study provides a sound

design for research that can support the experiential knowledge of

computer science educators. Discovering a correlation between

knowledge of problem-solving skills and algorithm development tools, and

the ability to effectively use a programming language, indicates that

learning these concepts early in the process is beneficial to those looking

to enter the field.

Perhaps the most important result that could come from this research is

the continued acceptance of pre-programming curricula in computer

science. The crowded computer science curriculum, combined with many

students’ desire to get directly to ‘real computing,’ creates pressure to

jump directly to programming in the first course. In order to counter this

pressure, effort must be made to gather evidence that supports the

effectiveness of non-programming oriented materials in the introductory

curriculum.

1.6 Social Relevance
It is the belief of this researcher that few computer science students are

provided with an adequate foundation for software development in their

computer science programs. This failure produces professionals who

either require remedial training or who perpetuate a continuing cycle of

misuse, abuse, or neglect in project development processes. While there

are certainly other factors involved in producing such results, it is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 22
Robert J Faux, ID 109462

advisable to critically examine computer science curricula and determine

what components would improve the eventual success rate of new

students. The development of new professionals who have an

appreciation for problem-solving techniques and algorithm development

processes, as well as an understanding of their relative strengths and

weaknesses, should certainly serve to improve product development.

If computer science programs hope to develop new professionals who are

comfortable with problem-solving and software or hardware development

approaches, then an early introduction of this material will set an

appropriate tone for learning. If students are given these tools early in the

process, they can consistently refer back to them. Studies that investigate

how computer science is most successfully taught will lead to the

development of courses and curricula better suited to help new students

enter the field. This will result in more adequately prepared professionals,

and, in turn, better computing products.

In general, there has been very little research to support ongoing dialogue

about how we teach computing and computer science topics. This study

serves to supplement the body of knowledge about what is successful or

unsuccessful in the early stages of learning this subject area. Hopefully, it

will lead to additional research that may, in the long run, support more

effective methods of teaching introductory computer science topics.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

23

2 Intellectual Context
2.1 Computer Science, Problem-solving and Programming

Computer science is rooted in the problem-solving processes found in

engineering (design), mathematical analysis (theory) and scientific

experimentation (abstraction) (Computing Curricula 1991). It is, by

comparison, a young field and, as such, it is rapidly changing. However,

knowledge of the field’s roots makes it possible to import ideas and

concepts from these other areas, even if the specific body of knowledge is

limited. For example, computer science shares many concepts and

foundational theories with mathematics (Fujii, 1987). Therefore, it makes

sense that computer science education research would benefit by

importing research from mathematics education research (Almstrum,

Hazzan, Ginat and Morley, 2002) and science (Almstrum, Hazzan, Ginat

and Clement, 2003).

Problem-solving methods play a major role in computer science, as well

as its parent disciplines. Strong foundations in domain recognition,

pattern matching with prior solutions, problem organization techniques and

solution testing are important for later success in the discipline.

(Computing Curriculum 2001) Early collections of heuristics for

mathematical problem-solving have relevance in current computer science

problem-solving. In fact, one of the earliest sets of heuristics can be

mapped to programming related problem-solving (Polya, 1957). Other

mathematically oriented problem-solving work by Wickelgreen (1974) and

Adams (1974) provide additional tools and insights that are applicable to

computer science. One of the first transfers of problem-solving techniques

to programming (Mitchell, 1984) is still applicable with today’s languages

and theories.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 24
Robert J Faux, ID 109462

Recent work specific to computer science problem-solving correlated

various types of problem-solving approaches with computer science

problem domains. Shin, Jonassen and McGee (2003) determined that

problem-solving for well structured versus ill structured problems require

different skills. Both require domain understanding and justification skills,

but ill structured problems require “meta-skills” such as planning and task

decomposition. Larger systems design and analyses tend to be ill

structured, so organizational system problem-solving techniques are

useful in software engineering environments (Ackoff, 1987, Krantz, 1991).

Collaborative problem-solving techniques are also an important part of

computer science problem-solving. Computer science is, by nature, a

collaborative discipline, often requiring team development and work

(Cook, 1997). This makes it even more important that practitioners be

made aware of team problem-solving techniques (Powers, 2002). In fact,

many techniques and processes found in mathematics, engineering, and

scientific inquiry were built with the purpose of providing a tool to

communicate problems, methods, and solutions. For programming,

methods such as diagramming and pseudocode are used to provide some

format for ‘program language free’ problem-solving. Therefore, it makes

sense to promote these tools as part of a collaborative problem-solving

toolset.

Unfortunately, the transfer of problem-solving techniques to application in

programming is a difficult step (Woods, 1996). This emphasizes the

importance of providing appropriate learning tools and frameworks from

which new students in computer science can work. Assuming that pre

existing problem-solving aptitude is sufficient for programming success

does a disservice to all but the most self-motivated students.

Furthermore, those who use programming as the tool to introduce

problem-solving techniques make the process more difficult by forcing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 25
Robert J Faux, ID 109462

multiple learning stresses on the student (Woods, 1996). Providing

intermediate steps between problem-solving techniques and programming

support the concepts of an advanced organizer (Ausubel, 1968). The

transfer of problem- solving skill to programming language implementation

should be more successful if learning steps are clearly outlined for the

student.

2.2 History of Curricular Change in Introductory Computer Science

Some of the first pre-programming courses appeared in the 1960s when

flowcharting classes were required in many community colleges prior to

the first Fortran programming course (Mitchell, 2001). Introductory

courses tended to provide a breadth-based set of materials that provided

a map to the field’s domain. Part of this set of background information

was the use of tools such as flowcharting and pseudocode (Mitchell,

2001). As colleges began adding computer science programs, it was

natural that they should follow this template for their own curriculum, since

there was little public knowledge about the field.

Certainly one can argue that much of the reason for this approach was the

limited amount of computing resources found on post-secondary

campuses. If a person had to create a set of punch cards for a simple

program and pay for every minute of processing time, it made sense to

use tools that were generally available. Thus, there were monetary and

logistical motivations for pseudocode, diagramming and other modeling

approaches, in addition to the pedagogical reasons cited here.

As computing power became more readily available, programming

language learning was moved up in the curriculum. Nicholas Wirth’s

Pascal, which was developed as the ‘learner’s language,’ provided a tool

for the inclusion of a programming language as part of the early problem

solving skill set. A text by Leestma and Nyhoff (1984) provides a typical

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 26
Robert J Faux, ID 109462

example of a Pascal-based introductory course. The language was used

as a problem-solving tool and other computing topics were built around

the language. Because the language was designed with the student in

mind, the difficulty of the learning curve was lessened somewhat, although

it could be argued that it was still more difficult than pseudocode or

flowcharts. Even so, one can see flowcharts or pseudocode used in

Pascal texts with great frequency as a learning aid.

Movement away from Pascal to other languages (such as C, Modula-2,

and Java) that were product oriented rather than learning oriented made

the programming first model problematic (Wolz, 1997). The increased

demand for learning and understanding syntax complexities pushed the

focus on problem-solving and the rest of the computer science field into

the background. Unfortunately, this fed the misperception that computer

science was literally equivalent to programming. In response to these

problems, the Computing Curricula recommendation for 1991 espoused a

breadth-first approach, suggesting that the computer science field be

approached initially in a survey-oriented course. (Computing Curriculum

1991). Various tools were developed--such as Karel the Robot (Pattis,

1994) and the Analytical Engine (Decker and Hirschfield, 1990)~in order

to support the bread-first approach and training in problem-solving

techniques that could transfer to programming.

It is also possible that movement to a breadth-first approach occurred, in

part, because there was more interest in computer science by a broader

base of students (Decker, 1992). In fact, there was an increased demand

for departments to provide non-major courses in order to respond to the

growing need for computer literacy (Curl and Hussin, 1993). Computers

were rapidly being integrated into all areas of the college-wide curriculum

and students were faced with the need to become proficient with these

tools. There were numerous approaches suggested for the literacy

program and their role in introductory computer science programs; for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 27
Robert J Faux, ID 109462

example, one can review Goldweber, Barr and Leskal (1994). However,

the call for computing literacy has moved into earlier learning curriculum

and students now enter college programs with sufficient computing skills

to make these courses less critical to the curriculum. The emphasis has

returned to how the introductory sequence can best serve those who are

entering the computing disciplines.

The breadth-first approach was not a complete success, nor did all

computer science programs follow the Computing Curriculum

recommendation. Some educators even began to worry that the discipline

had become watered down and that the math background of the discipline

was no longer valued (Tucker, Keleman and Bruce, 2001). Clearly, there

was no accepted best practice for introductory courses in computer

science. The net result was a new curricular outline that no longer

supported a single approach to introductory computer science

(Computing Curriculum, 2001). Instead, several curricular options are

now supported by these guidelines, and computer science programs are

left to choose their own best fit.

2.3 Introduction to Computer Science
There is no accepted best practice for the curriculum used as an entry

point to the discipline. Instead, there are three introductory approaches

supported in the recommended curriculum load for computer science.

Essentially, these may be categorized as bread-first, depth-first and

breadth-also approaches (Computing Curriculum 2001). This standard

includes variations on these approaches, such as whether or not

programming occurs in a breadth-first introduction and whether

introductory problem-solving skills are addressed in a depth-first

programming course. The breadth-also approach integrates both

traditional approaches (breadth-first and depth-first), and encompasses

multiple courses in a typical program.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

28

Breadth-first approaches are supported by texts such as Brookshear

(2000) and Schneider and Gersting (1999). Both texts rely at various

points on programming languages to cover some of their content.

However, they both limit this exposure and neither uses the programming

language as the focal point for the entire text. It has been suggested that

the best solution for a breadth-first introduction is to consider it an

introduction or orientation to the subject area and to the department.

Cook (1997) suggested that problem-solving skills should be given the

largest portion (40%) of the course time, but other items (such as

teamwork, computing tools, career options, subject options, and

school/department related information) should be included. Cook also

supported the option of omitting programming from the subject domain,

although he did not hold firm to making this course a first course in the

program. Others who have outlined breadth-first programs include those

who are more oriented to discrete structures (Tucker, Barker, Bemat, et

ai, 1998) (Tucker and Garnick, 1991) and those who tend to support a

software engineering based approach (Bagert, Marciy and Callani, 1995).

The depth-first approach is commonly a programming first approach,

although some incorporate problem-solving, algorithms, pseudocode and

diagramming. Some use an alternative focus, such as web design, to

attract interest (Mercuri, Herrman, and Popyack, 1998). However, the

language is almost always the focal point for problem-solving skill

development. Other proponents for the depth first approach go so far as

to argue that programming should occur first and be followed by a

breadth-based course (Gray and Frazier, 2002). In this case, the

advocates were looking at retention and cite mathematical shortcomings

as a barrier. Of course, this fuels the argument that the curriculum is in

danger of becoming over-simplified (Tucker, Keleman, and Bruce, 2001),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 29
Robert J Faux, ID 109462

as the justification for this change is obviously based on the preparation

level of incoming students.

The current, most popular approach for those writing on the topic seems

to be the ‘breadth-also’ approach, which seeks to combine both

programming and breadth in the curriculum. This seems like an attempt to

get back to the old environment often found in the Pascal courses, where

a language built for learning eased students into organized/programmatic

problem-solving. In order to achieve a similar environment, some

espouse the use of ‘simpler languages’ such as Javascript (Reed, 2001).

A carefully presented and justified breadth-first approach is outlined by

Powers (2002). This curriculum treats the first three courses as an

introductory sequence. It is based on the concepts of spiraling (referring

to topic areas multiple times at different levels of difficulty and different

perspectives throughout the curriculum), spacing (the view that students

need to see things over time in order to retain learning), and constructivist

theories (the view that people construct their own understanding from

what they have experienced). This approach is supported by the

Computing Curriculum (2001) guidelines and is carefully backed by

pedagogically sound choices. However, it remains to be seen whether

these choices lead to increased success for participants in the program.

Numerous specific approaches to introductory classes are being tried with

varied success and with varied attention to measuring that success.

Some of these approaches focus on providing specific events, others

argue for particular pedagogical frameworks, and others focus carefully on

only one aspect of teaching in an introductory course. On the positive

side, computer science educators appear to be quite willing to share new

ideas and approaches to teaching with each other. On the other hand,

measurement of success is usually based on typical student satisfaction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 30
Robert J Faux, ID 109462

feedback, anecdotal evidence, and (possibly) grade results. Furthermore,

results are generally specific to the school or program in which the results

were collected, so making generalizations based upon them is usually

quite difficult. Although there are shortcomings in the current collected

data set, it is still pertinent to the body of knowledge for computer science

education.

Common learning experiences that use active learning techniques to

imprint a concept in the student’s mind can be used in breadth-first

environments (Lewandoski and Morehead, 1998) and in the depth-first

curriculum (Bouvier, 2003). In both cases, educators used physical

models and active events to encourage attempts to solve fun problems.

For example, Bouvier used an exercise where students form a living

flowchart, assigning roles to individuals for variables and processes. The

intent of these exercises was to provide a base for understanding that

students can easily relate to and to make the experience highly

memorable for increased retention of knowledge.

Language selection has long been a hotly contested component of the

introductory computer science curriculum. In fact, the language choice

has been known to impact the entire computer science curriculum in a

program (Dingle and Zander, 2001). Obviously, language choice matters

most in a programming-first environment, since it is intended to be both a

tool for problem-solving and for learning programming concepts.

Pedagogical choices must also be weighed against student perceptions of

viability and name-recognition. Some have attempted to formally analyze

which languages make the most sense in an introductory class: For

example, Isaacson and Scott (2002) tried to differentiate between Python

and TCL, with minimal success. However, such studies have used highly

subjective measurement approaches and have provided inconclusive

results.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

31

Regardless of language, another debate has arisen with respect to the

use of graphical environments and built-in libraries. Some, such as

Koffman and Wolz (1999), encourage avoidance of these tools, while

others advocate for the full use of GUIs and built-in libraries (Odekirk,

Jones, and Jensen, 2000). Of course, as with any polarized environment,

there is always the possibility of attempting to hybridize the two, which is

espoused by others (Comer and Roggio, 2002). Certainly, graphics grab

student attention and may increase student satisfaction, based on surface

reactions. Visualization projects have become a hot area for computer

science education research and have crept into the introductory

sequence, although the focus has been primarily on data structures and

algorithms at later points in the curriculum (Akingbode, Finley, Jackson, et

ai, 2003). An excellent set of criteria for effective visualization tools has

been outlined by Naps, Rossling, Almstrum, et al. (2002). Anyone who

plans to use visualization in an introductory course should look carefully at

the recommendations outlined in that paper before proceeding. The

authors make it very clear that surface satisfaction does not necessarily

lead to better learning and that there must be a carefully considered

strategy for including visualization as a key component in the curriculum.

Visualization and creativity for problem-solving learning may have been

best represented by Karel the Robot in earlier introductory courses (Pattis,

1981). However, some are now expanding the concept to using

inexpensive robots as a problem-solving learning tool (Schumacher,

Welch and Raymond, 2001) or as a programming learning tool (Schep

and McNulty, 2002). These tools are intended to encourage students to

work on problem-solving and programming more often by making the

results very obvious to the student. It is supposed that students can better

view consequences of algorithmic choices, and thus relate those choices

more easily to outcomes, when visual and (potentially) tactile or aural

senses are included as output.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

32

Others approaches in introductory courses use tools that provide instant

feedback for learning. For example, self-examination or self-testing tools

increase the immediacy of feedback to the student. One such project is

outlined briefly by Wabel (2000), where a self-quiz tool was built for

students in Javascript. Another way of accomplishing interactive, but non

personal, instruction is the development of online tutorials (Ericson and

Rogers, 1996). Usually, such tools are provided at schools with a higher

ratio of students to instructors. Since it is more difficult for a student to

receive individual attention, it is argued that such tools can serve as an

adequate proxy.

Yet another approach is to link software engineering principles with the

introductory sequence. In this case, it is argued that the software

development process embodies a structured problem-solving approach

that can be applied to large portions of computer science (Long, Wedie,

Bucci, et a!., 1999). Hilburn (1993) outlined a highly structured curricular

approach that directly reflects structured software engineering processes.

This would be an instance where the entire curriculum is nested in

software engineering principles. Some directly integrate software

engineering into the laboratory environment only (Roberge and Suriano,

1994). But most proposed integrations, such as Towhidnejad and Salimi

(1996), fall into the trap that assumes computer science is largely a

software engineering degree. This is not necessarily an issue if one

prefers the depth-first approach since concentration is already focused on

learning programming. In that case, it makes sense to encourage correct

development of software from the beginning. However, breadth-first

proponents may not agree that this approach is fully extensible to all of

computer science.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 33
Robert J Faux, ID 109462

Specific works on methods for teaching programming include techniques

that encourage programming from ‘scratch’ versus those that use a

‘completion strategy’ (Chang, Chiao, Chen and Hsiao, 1997). Educators

who believe in the completion strategy tend to agree with Deimel and

Moffat’s (1982) outline of a successful programming-learning model. This

model includes the observation of program execution and the study of

good programs, followed by the chance to extend and modify those

programs. Once students have had a chance to observe and work on a

sufficient number of ‘good’ models, they can attempt independent design

and code writing.

Another excellent idea for encouraging success in both programming and

problem-solving skills is to connect assignments into bigger, more

meaningful projects (Yang and Wei, 1999). Early courses often isolate

processes and concepts into small tasks without providing a reference

point within a larger, more comprehensive framework. An interesting

study by Carbone, Hurst, Mitchell and Gunstone (2001) clearly indicated

that students frequently fail to associate earlier tools and tasks with

current tasks or tools. Projects that provide a broader frame of reference

should provide linkage between concepts and tools and avoid the

perception that each course task is isolated and unrelated to other tasks.

Another interesting approach incorporates reflection into introductory

computers science activities (Fekete, Kay, Kingston and Wimalaratne,

2000). Part of the process of learning is integration, which comes from

reflection about what has happened during learning events. In this case,

the authors attempted to provide a tool to encourage useful reflection on

learning in the introductory course. Tools, such as learning journals, are

frequently used in other disciplines with success, and it makes sense to

extend their use to early computer science courses.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 34
Robert J Faux, ID 109462

2.4 Related Computer Science Education Research

Computer Science Education is still a very young discipline and research

is still sparse, although growing rapidly. Unfortunately, a large number of

articles purporting to be ‘studies’ or ‘research’ appear to be anecdotal or

coincidental. It has been suggested that once some sort of criteria for

research is agreed upon, the body of knowledge will become more stable

(Clancy, Stasko, Gudzial, et al., 2001). Others suggest that the body of

knowledge should be supplemented by the integration of mathematical

education research (Almstrum, Hazzan, Ginat and Marley, 2002) and

science education research (Almstrum, Hazzan, Ginat and Clement, 2003)

in order to build up this body of knowledge and inform new research.

Much current research is focused on determining predictors for success in

various learning tasks. One of the earliest of these studies attempted for

computer science failed to link high school test scores and performance

with predicting success in computer science at the college level (Butcher

and Muth, 1985). Another approach to finding predictors is to determine if

there is a link between the successes in one course with success in

another. Stein (2002) found some correlation between success in the first

computer science course and success in the second course, as well as a

link with the first calculus course and the second computer science

course. Surprisingly, no link with a discrete structures mathematics

course was found. This is counterintuitive, since discrete structures are

viewed as a key component for computer science theory.

It is possible that those who enter introductory computer science courses

with prior programming knowledge may have a decided advantage over

those who do not. Hagan and Markham (2000) found that there was such

an advantage and that it grew significantly if there was exposure to

multiple languages. However, it should be noted that this approach

assumed a programming-first curriculum, and success would naturally be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 35
Robert J Faux, ID 109462

more likely in that situation. Furthermore, the extent of prior programming

knowledge would certainly have an impact on learning. Persons who

have limited introductory knowledge or who are misinformed about the

process may have greater difficulties than those who have no prior

experience.

Student characteristics may also provide insight into achievement in

programming and computer science. In general, personality traits have

been shown to have an impact on achievement (Diseth, 2003).

Characteristics such as openness, conscientiousness, and neuroticism

were shown to have some correlation with achievement levels. Deep,

surface, and strategic learning approaches were also shown to have some

effect on success in learning. This information is not necessarily

surprising; it makes sense to say that a person who is conscientious

usually achieves at a higher level. Similarly, a person with only a surface

learning strategy will tend to achieve at a lower level.

The concept of self-efficacy is that individuals develop perceptions that

can impact their ability to achieve. Bandura (1986) clearly outlines factors

that may change or mold a person’s individual perceptions (prior

accomplishment, observed learning, emotions, and persuasion). These

perceptions can alter overall performance, in part because the individual’s

choice to pursue or continue with studies are strong or weak. Some

studies, such as Black and Deci (2000), show that those who have a more

specific reason for undertaking a task or learning goal will tend to

succeed. Therefore, one might extrapolate that a person who views

becoming a good programmer as a key component of success in

computer science will tend to do what is needed to succeed. Similarly,

one could then argue that educators could alter perceptions about what is

important by working on this desire to succeed and by linking problem

solving techniques to that success.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

36

Overall performance could also be altered by the amount of effort and

persistence put forth by the individual. According to Bandura, effort is

influenced by the individual’s perceptions of the task. This is confirmed by

a study that found that attitude towards failure had a significant impact on

achievement, whereas the process of learning appeared to have little

impact (Bay and Daniel, 2003). Also, research specific to CS1 by

Rountree, Rountree and Robins (2002) found that the strongest indicator

for achievement (of several possible indicators) was the expectation the

individual had for success. These contentions might lead one to extend

the results and conclude that there is no need to worry about approach in

introductory courses. After all, process doesn’t matter. However, it is

important to remember that attitude can be reformed and placed into a

new context (Bandura, 1986). Therefore, attitude can be altered by the

approach, techniques, and coverage used in introductory courses, when

foundational contexts are being built.

Apple and Nelson (2002) identified several risk factors for introductory

computer science students and outlined approaches they intended to take

in order to alter the situation. Many of those changes focused on attempts

to change attitudes in hopes of encouraging success in learning.

Changing attitudes and combating myths about problem-solving are both

goals for the introductory computer science sequence. Efforts to isolate

beliefs about problem-solving learning have shown, for example, that new

students tend to believe there is more value in speed tests (cover lots of

short problems) versus power tests (fewer but deeper problems) (August,

Lopez, Yokomoto and Buchanan, 2002). Similarly, they tended not to do

additional problems beyond assigned work. Since these are known to be

poor choices in problem-solving learning, these attitudes and beliefs could

be addressed in an effort to change rates of achievement.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 37
Robert J Faux, ID 109462

Learning styles can also be linked to performance in early computer

science courses. Thomas, Ratcliffe, Woodbury and Jarman (2002) found

that students who could be categorized as active, sensing, or visual

students tended to do poorly. To their credit, the researchers have not

attributed the success and failure of these students as natural tendencies

that lead to failure in computer science. Instead, they have correctly

assumed that it is necessary to find ways to make the curriculum more

inclusive of varied learning approaches. This is consistent with Markova

(1996) and the ‘six patterns of natural intelligence,’ where it is clear that

tendency need not dictate success. Furthermore, the authors used results

in mathematics education research by Tanner and Jones (1999), which

shows that teaching style has an impact on thinking as it either succeeds

or fails to facilitate for certain learning styles.

Characteristics more commonly linked to success in computer science

include comfort with mathematics, computing and problem-solving. Byrne

and Lyons (2001) show a tendency for persons with prior mathematical

and science skill ability to have an easier time with learning programming.

Goold and Rimmer (2000) followed cohorts of students through the

introductory classes and found that problem-solving skills are important for

programming success. Furthermore, a dislike of programming was an

indicator for success or failure in the introductory sequence. As with many

of these studies, it is difficult to determine whether this is a product of how

courses are currently taught, or whether it is a determining factor in

predicting success. However, one could argue that this research indicates

that a programming-first approach could be less desirable.

Other studies attempt to build self-efficacy measuring sticks for varying

classes, tasks, and problems, and this seems to be a more reliable

method for obtaining sets of predictors for success. For example, a self-

efficacy scale was created for programming success (Ramalinam and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 38
Robert J Faux, ID 109462

Wiedenbeck, 1998) that appears to have reasonable reliability and validity

measurements. Similarly, an excellent study by Quade (2003) developed

a scale for CSO courses and found that prior problem- solving success,

along with other characteristics, tended to play a role in CSO course

success.

Studies specific to approaches taken in introductory computer science

education tend to be used to measure levels of success for favored

approaches. For example, Bouvier (2003) used data collected with regard

to student satisfaction, retention, and grades to determine the

effectiveness of common learning experiences in the depth-first

introductory environment. While this sort of study is not well controlled

and is subject to numerous external variables, it is interesting to note that

retention and satisfaction increased while the grade distribution did not

improve. Lewandowski and Morehead (1998) used a similar study

approach and reported positive impacts on learning in their breadth-first

environment.

McCauley and Jackson (1999) attempted to measure the success of

integrating software engineering into the introductory curriculum. In this

case, the researchers tried to determine if this change affected future

learning by tracking students through the computer science program and

collecting grades for subsequent classes. Again, the subjective nature of

the data collected and the numerous external variables were bound to

counter the modest improvements found in certain courses. On the other

hand, Buck and Stucki (2000) argued, without the benefit of a study, that

Bloom’s taxonomy prohibited success of the integration of software

engineering. They may certainly have a point, given the fact that some

attempts at this integration do not provide a proper framework from which

students can construct knowledge. However, this observation should not

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 39
Robert J Faux, ID 109462

be extended to every attempt to incorporate software engineering into the

introductory curriculum.

Perhaps one of the most specific and innovative pieces of research is that

undertaken by Booth (1997), who used phenomonographic research

methods to understand how students learned recursion. The results of

that study provide interesting insight on methods for presenting that topic,

but its extensibility to the entire introductory sequence is problematic.

However, those who use Scheme-language approaches as an

introduction to computer science will find this work useful.

Pedagogical studies that have direct relevance for introductory computer

science strategies include one by Dempster (1988) that clearly indicates

the benefits of spacing in the curriculum. In other words, it is important to

space a concept or specific learning task/area over a prolonged period of

time to increase retention of knowledge. This study strikes a blow to

curricular structures that over-compartmentalize topics. In particular, any

introductory sequence that neglects repetition or linkage of concepts to the

rest of the curriculum is bound to see lower success rates. Hazzan (1999)

argues that abstraction levels in algebra need to be reduced in order to

reach beginning students. This study could easily be applied to early

problem-solving in computer science, since it supports techniques that

incorporate some sort of concrete method to emphasize concepts. A

more general study by Davy and Jenkins (1999) attempted to measure the

difference in programming learning when the course implemented

components based on pedagogical models that had seen general

success. The new course consisted of a discursive component (learning

goals agreed upon and clarified), an interactive component (collaboration

with peers and instructors), an adaptive component (to respond to change

and individual situations), and a reflective component. The results of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 40
Robert J Faux, ID 109462

study, although inconclusive, did not show a decline in learning

achievement.

Current studies in paired programming are finding that collaborative work

may not harm, and possibly may help, students in beginning programming

courses. A study by McDowell, Werner, Bullock and Fernald (2002)

shows that students completed the first programming course at higher

rates and performed nearly as well on individual exams as those who

prbgrammed individually. While this is not conclusive, it does lend further

support for collaboration in the early computer science curriculum.

Unfortunately, collaboration is also a learned technique and Johnson,

Johnson and Smith (1998) clearly address the need for instruction in

teamwork and collaboration, if one expects to use it as a pedagogical tool

for learning.

A strong body of knowledge exists regarding the need of students to

understand the goals of any given course of study. Many attempts at

implementing a computer science curriculum have produced students who

did not know the reason they were in the program, even after several

semesters of attendance (Howell, 1996). This is, perhaps, indicative of a

bigger problem. Students are entering computer science with inaccurate

preconceptions of what the discipline’s foci are. Many believe the myth

that programming is computer science, and vice versa (Powers and

Powers, 2001). If one agrees with the constructivist philosophy that

students build their own understanding by combining prior understanding

with new experience, it makes sense that an introductory curriculum

should work to quickly establish a framework upon which future learning

can be built. Ben-Ari (1998) clearly established that this lack of framework

leads to future learning problems in mathematics; he then extended this

work to computing and programming (Ben-Ari, 2001).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 41
Robert J Faux, ID 109462

Research also shows that students need to be encouraged to try problem

solving approaches that do not naturally occur to them. For example, it

has been shown that new students tend to spend very little time analyzing

a problem and rely almost exclusively on trial and error (Schoenfeld,

1992). This approach is quite contrary to that taken by experts, who use a

combination of associations, intuitions, and testing to solve a problem

(Fischbern, 1987). It is clear that less experienced problem-solvers could

use direction and encouragement to begin using a broader set of tools.

Finally, a large body of knowledge exists that clearly shows that working

from within some sort of advanced structure tends to aid students who

enter a new domain of knowledge. Research in this area can be traced

back to Dewey (1916), who believed that learning was a series of

reconstructions of knowledge. Ausubel (1968) applied these ideas to

language learning; he found that, to learn a language, one first perceives

how the language works or applies, then subsumes that knowledge using

experience as a frame of reference. Only then can one apply language

learning. Mayer (1981) found that, in general, advanced organizers (tools

that help provide a frame of reference for a new student) did improve

learning success. Perfetti (1979) confirmed that advanced organizers

tended to increase retention. Holt, Boehm-Davis and Schults (1987)

extended this to programming by showing that object oriented or

functionally decomposed programming solutions were understood better

by new programmers than less organized code. In other words,

programming that had structure was more successfully learned. Work by

Bailie (1991) illustrated that existing coding models supported

programming learning. On the other hand, Frazer (1998) demonstrated

that existing models seemed to have no impact on those learning a

second or third programming language. Finally, Applin (2001) specifically

showed that those who learned to program by starting with programming

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 42
Robert J Faux, ID 109462

templates performed better than those who learned with no starting

template.

2.5 Context within Body of Knowledge
This study, by necessity, worked within the breadth-first, CSO approach to

introductory computer science. Both schools who agreed to participate

work with a curriculum that uses this technique. This does not preclude

the increased use of problem-solving and algorithm development

techniques in depth-first or breadth-also curricula. This research focused

on the addition of a higher concentration of materials in this area prior to

programming and was only tested within the bread-first environment.

However, it is possible that the results of this study could provide some

insight to alternative curricular structures in addition to the breadth-first

approach.

It must be stressed that the approach taken in this research project

assumed that problem-solving, pseudocode, diagramming, and algorithm

testing would be covered prior to any coverage of programming. No

specific significance was attributed to other topics presented in the CSO

course, since they were the same for both the control and treatment

groups. Furthermore, no claims were being made with respect to the

relative value of any of the major strategies (breadth-first, depth-first, and

breadth-also).

Current pedagogical knowledge and recent study results were utilized to

identify an appropriate set of curricular changes and their corresponding

measurements of programming learning change. First, the curriculum

achieved both spacing and spiraling for students in the program. This was

accomplished by covering problem-solving within the context of general

problem-solving, then within the context of diagramming, pseudocode, and

testing. It was revisited in the CS1 course as a part of programming

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 43
Robert J Faux, ID 109462

learning. Furthermore, by presenting problem- solving in a general sense

early in the first course, more students were better able to construct a new

knowledge of problem-solving, closer to what they would need for

programming. Introducing diagramming, pseudocode, and algorithm

testing provided the intermediate step between general problem-solving

techniques and programming. This served as the advanced framework

into which programming in any language could be placed.

The alterations to the curriculum did not ignore the issue of student

satisfaction. Instead, the new curriculum provided a clearer framework

and purpose for the CSO course. Better definition of purpose allowed

students to prepare themselves for success and provided them with a link

from current tasks (algorithm development) and future tasks (programming

in a language). Also, this technique isolated learning curves and reduced

the stress of reacculturating to a new body of understanding and

knowledge (Bruffee, 1993). It was expected that a better focus for the

CSO course would lead to improvement in future success rates in the

program.

Admittedly, part of the purpose for providing improved algorithm

development tools in the CSO course was to level the playing field for

persons who either have had less prior problem-solving success or for

those who have had no prior programming experience. Persons who

have already completed programming tasks successfully are, in fact, likely

to succeed again. Although they could certainly come away with some

new understandings and new tools, such outcomes were not the focus of

these curricular changes. On the other hand, it was expected that

persons with prior programming experience might find these tools to be

useful, since they would be able to more readily generalize the process

and move from one language to another. It was also deemed possible

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 44
Robert J Faux, ID 109462

that these people might better learn certain concepts after exposure to this

new curriculum.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

45

3 Methods
3.1 Research Design: Study Structure

3.1.1 Research Question/Goal Statement
Will the integration of a set of algorithm development concepts and
problem-solving techniques into a pre-programming computer science
course impact the learning of programming skills and application of
problem-solving skills in the first programming course for post-secondary
institution students?

Algorithm development concepts and problem-solving techniques were

delivered to participants by integrating new materials with the existing CSO

courses. This does not imply that there was an absence of problem

solving or algorithm development techniques in the CSO course prior to

the treatment. If that had been the case, it is likely that the results would

be more definitive. Instead, changes were carefully integrated into an

existing curriculum. The new materials expanded coverage on problem

solving and algorithm topics and increased their relative importance for the

course. Details of these changes can be found in section 3.3.2 and all

added materials may be viewed in Appendix I. The new materials were

designed specifically for the breadth-first approach used in the existing

courses. However, this does not preclude the validity of these results for

general inclusion of these topics among the diverse options for CSO

curricula.

Problem-solving techniques encompass the identification and

understanding of a problem as well as the discovery, testing, and

communication of possible solutions to that problem. The process begins

with requirements gathering, where vital facts are identified, the scope of

the problem is confirmed, background information is discovered, and the

goal is clarified. Possible solutions are explored using various techniques,

including the development of algorithmic solutions for the problem. These

solutions must then be tested for correctness and completeness.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 46
Robert J Faux, ID 109462

Communication and collaboration are also very important parts of the

problem-solving cycle. The modified curriculum for the treatment group

provided an introductory-level coverage of these basic tools.

Algorithm development concepts focus on the creation of well-defined,

step-by-step solutions for a given problem. Computer science solutions

tend to focus on process or procedure, so an algorithmic solution is

frequently chosen for problem solution communication. Algorithms are

represented in pseudocode, diagrams, program code, and/or

mathematical terms. There is a broad range of programming languages

that are used for the implementation of algorithms. Because these

languages bring with them specific syntax and structure requirements, it is

useful to have these generalized methods of representing algorithms.

Since mathematical representations, aside from proofs, are not flexible

enough to represent all process-oriented solutions, pseudocode and

diagrams are most frequently used as solution communication tools.

Once the solution is proposed in a standardized and generalized form, the

algorithm may be tested for correctness and completeness.

In practice, algorithm development approaches are recognized as useful

tools for programming and project development. In fact, programming is

simply an application of problem-solving, using a specific grammar to

enact proposed solutions. Intuitively, there is a direct mapping of

algorithm development skills to programming skills. It is logical to identify

these topics as appropriate advanced organizers for programming

learning, so the new CSO curriculum provided students with a basic set of

algorithm development and testing tools for use as tools for the

representation and communication of candidate solutions.

There are, of course, several types of programming languages. While this

study makes no distinction between these languages, the subject courses

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 47
Robert J Faux, ID 109462

used the C++ and Java programming languages. Both languages include

object oriented programming, and both have a basis in traditional

procedural programming structures. Therefore, programmers for each of

these languages may benefit from learning step-by-step algorithmic

approaches. Languages based on lambda calculus (such as Scheme or

Lisp) may not benefit as strongly, since they are built for recursive

solutions. This study did not include lambda calculus-based languages in

its scope because no tools were incorporated to clarify recursive concepts

in the curriculum. However, it should be noted that algorithms could be

presented in such a fashion that recursive solutions would be supported, if

the goal programming language required it.

The research question limited the research domain to two courses in

traditional post-secondary computer science courses. Thus, educational

efforts in primary and secondary schools may not be able to apply the

results of this research, since the population and environment differs

significantly. The target population consisted of adult students enrolled in

typical four-year degree programs in the United States. This limited scope

was largely driven by the convenience of willing and available instructors

of CSO and CS1 courses at two institutions fitting this description.

However, these limitations do not preclude the possibility of future

adaptation and study in other populations or dissimilar environments.

3.1.2 Study Type
The intent of this research was to provide evidence that a hypothesis or its

corresponding null hypothesis should be accepted or rejected, which

indicated that the research was explanatory in nature. However, there

was also a descriptive research component, since the breadth of the data

collected included information that did not directly test the hypothesis.

This information was used to account for some of the external variables

that could not be handled by using randomization techniques. Therefore,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 48
Robert J Faux, ID 109462

this project was exploratory research that combined explanatory and

descriptive goals.

This was a control study where groups existed naturally as cohorts.

Individuals were not selected and assigned to groups, so a nonequivalent

control group design was used. The research design modified the ‘cohort

design with treatment partitioning’ described by Cook and Campbell

(1979). The biggest difference between this study and most

pretest/posttest control group designs was that the treatment actually

occurred before the pretest. It is more accurate to say that this study

consisted of a posttest in two time intervals; however, “posttest in two time

interval” models assume that the treatment pertains directly to the object

of measurement. In this case, the goal was to measure subsequent

learning rather than the learning of the materials provided in the

“treatment” curriculum. Since those who took the CSO course prior to

modification had some exposure to algorithms and problem-solving, the

control group was more accurately labeled as a “weak” treatment group.

Participants who took the course after modification were part of the

“powerful” treatment group. The pretest became, in effect, a first interval,

post-treatment measurement, but will be referenced in this document as

the pretest for simplicity. The posttest was a second interval, post

treatment measurement and represented the first opportunity to measure

programming skill and knowledge.

3.1.3 Triangulation
Triangulation occurred at both the data collection and data analysis points

of the study design in this research. This implies that there was

triangulation of the purpose or goal of the project. Although the research

question remained the overarching goal of the entire piece of research,

subordinate hypotheses were used to lend greater clarity to the primary

question. A standard approach for research would have been to develop

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 49
Robert J Faux, ID 109462

a hypothesis and a null hypothesis for which data would be collected in

order to support their acceptance or rejection. However, the weight of

external variables made it unlikely that truly useful conclusions could be

reached with this approach alone. Therefore, the research question was

used to develop complementary data collection tools that would integrate

with the standard hypothesis testing approach.

One part of triangulation was the creation of subordinate research

questions, developed in response to findings in the literature review.

Participant satisfaction and understanding of the relevance of covered

material (see Chapter 2) has been shown to prepare students for

successful learning, so questions were included in the data collection tools

that gauged student satisfaction with the pre-programming (CSO) course

as it related to the CS1 course. The rationale was that if students showed

a significant increase or decrease in satisfaction in the CSO course, this

information would provide or remove support for the overall hypothesis.

A second subordinate research question was built around student self-

evaluation of skill. Existing research indicated that students tend to learn

and perform better when they feel that they will be able to succeed (see

Chapter 2). Self-evaluation questions were included in the data collection

tools and these data were applied towards testing a second subordinate

hypothesis about student self-evaluation of capability. If the data revealed

increased or decreased confidence in ability to perform programming

tasks, for example, then it increased or decreased support for the overall

hypothesis that curricular changes positively impacted learning.

In addition to subordinate research questions and hypotheses, qualitative

information was also gathered. Some of this information was collected by

means of open-ended questions in the demographic data collection tool

and the exit survey data collection tool. Additional qualitative data was

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 50
Robert J Faux, ID 109462

collected for approaches used to solve problems in the pretest and the

posttest. For example, it was noted whether participants used diagrams,

pseudocode, or other tools to help solve problems. Collection of these

data points stemmed from an interest in exploring the research question,

but data collected in this fashion did not lend itself to hypothesis testing.

Qualitative analysis was utilized to confirm or clarify the findings of the

hypothesis testing methods.

The final piece of the triangulation process in analysis was the addition of

data mining on information collected by the data collection tools. The

volume of external variables made it highly unlikely that hypothesis testing

alone could make a strong statement about the changes enacted in the

curriculum. Unsupervised clustering was used on instances of data, using

the participant identification number to differentiate between instances

(records). External variables suspected to have impact on the results

were included so that clusters driven by these pieces of data could be

identified. When this process uncovered potential correlations for external

variables, they were tested further for significant impact on the test score

outcomes. Further data mining analysis used supervised learning to test

specific, learning-based categories. Two-thirds of the instances were

used to build a model and the remaining one-third of the instances was

used to test the viability of that model. Data fields selected for inclusion in

these sessions were directed by the unsupervised clustering results.

3.1.4 Hypothesis Testing Structure
It was natural to select a hypothesis that represented both the desired

result and the result that best matched experiential and anecdotal results

found in the literature review. Therefore, the selection of this one-tailed

alternate focused on an increase in learning for those receiving instruction

based on the altered curricular materials. However, since it was difficult to

isolate the variables sufficiently in order to accept or reject this hypothesis

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 51
Robert J Faux, ID 109462

with any reasonable degree of certainty, the null hypothesis was tested for

acceptance.

Null Hypothesis

The integration of a set of algorithm development concepts and problem
solving techniques into a pre-programming computer science course will
result in NO MEASURABLE DIFFERENCE in the ability to learn
programming skills in a subsequent course for college and university
students.

The null hypothesis posited that there would be no measurable difference

in learning between the control and the treatment groups. Acceptance of

the null hypothesis would imply that the curricular change neither aided

nor obstructed the learning of programming skills in the CS1 course. This,

of course, would be an acceptable outcome from a pedagogical

standpoint, as it would mean that no harm was done to participating

students. Acceptance of the null hypothesis in this particular study was

not viewed as a potentially definitive result, since all participants who

attended a CSO course did have some exposure to problem-solving and

algorithm development. Furthermore, acceptance of the null hypothesis

was not considered to be an indication that algorithm development and

problem-solving had no value for future computer science learning. It

would mean only that no real impact on early programming skills was

demonstrated. Rejection of the null hypothesis was viewed as potential

evidence that there was some measurable difference between these two

groups. Given the possibly large set of external variables, it was expected

that this would likely represent the extent that any positive or negative

correlation between the treatment and programming skill success could be

claimed.

Measurement of the “ability to learn” could be a source of much

disagreement if one were to become overly concerned with semantics.

For the purposes of this research project, the ability to learn programming

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 52
Robert J Faux, ID 109462

was measured by the evidence of knowledge shown by participants in the

pretest for problem-solving and the posttest for programming. It may have

been more correct to predict that there would be a measurable difference

in exhibited programming skill than to state that the ability to learn would

increase. Furthermore, it is possible to argue that “ability” refers to one’s

predispositions for learning and doing. However, the researcher was

persuaded that problem-solving and algorithm development skills enhance

the ability to develop programming skills. Therefore, evidence of

accomplishment (or exhibited knowledge) over a time interval was taken

as evidence of learning. Since measurements were not taken on how

participants learned problem-solving or algorithm development, the

relationship between algorithm development and programming skills were

highlighted. Hence, the ability to learn was measured by examining

participants’ knowledge status at two points in time after the treatment or

control CSO curriculum had been applied.

Two-Tailed Alternate Hypothesis

The integration of a set of algorithm development concepts and problem
solving techniques into a pre-programming computer science course will
result in a MEASURABLE CHANGE in the ability to learn programming
skills in a subsequent course for college and university students.

Alternate Hypothesis (One-tailed):

The integration of a set of algorithm development concepts and problem
solving techniques into a pre-programming computer science course will
result in a measurable INCREASE in the ability to learn programming
skills in a subsequent course for college and university students.

The alternative (one-tailed) hypothesis reflected the researcher’s

experience and expectations about the alterations to the curriculum in the

pre-programming course. However, rejection of the null hypothesis was

not viewed as equivalent to acceptance of the alternate. The logical

conclusion if the null were rejected would be that there was a measurable

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 53
Robert J Faux, ID 109462

change in learning, but since it was entirely possible that the change in

curriculum might have led to confusion, dissatisfaction, or misdirection that

decreased learning, a two-tailed hypothesis was included as an additional

possibility. Acceptance of this hypothesis was considered an indication

that the curriculum had an impact on learning. It was deemed possible

that this change would be either positive or negative in nature, and equally

possible that it would be both positive and negative. Regardless,

acceptance of the two-tailed alternate was viewed as support for the

contention that curricular decisions in the CSO course were of potential

import for subsequent CS1 courses. (Of course, acceptance of this

hypothesis could not occur if the null was accepted. However, if this

hypothesis was accepted, it would then be possible to accept the original,

one-tailed alternate.)

Acceptance of the one-tailed alternate was considered to be the strongest

statement that could possibly be made as a result of the data collected in

this research. Since there was a distinct possibility that results would fall

within the standard margin of error, triangulation was used to support the

hypothesis-testing component. Consistent results across all methods

utilized in this study were expected to help address issues of validity and

reliability that could not otherwise be adequately dealt with in a pure

hypothesis-test design.

Subordinate Hypothesis 1:

The integration of a set of algorithm development concepts and problem
solving techniques into a pre-programming computer science course will
result in a measurable INCREASE in CS1 student satisfaction as to the
applicability of the CSO course.

Satisfaction measurements were a reasonable inclusion in a study that

aimed to improve the curriculum for a given course. Participants were

informed that the motivation for the study was to improve the prior course

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 54
Robert J Faux, ID 109462

in the curriculum, so they were prepared to answer questions pertaining to

their assessment of the course. This information was supplemented by

qualitative information solicited by open-ended questions in the same data

collection tools, which became an important part of the triangulation

process. In light of the studies that link satisfaction with learning, evidence

of increased satisfaction was viewed as support for the primary

hypothesis.

Subordinate Hypothesis 2:

The integration of a set of algorithm development concepts and problem
solving techniques into a pre-programming computer science course will
result in a measurable INCREASE in self-evaluation ratings for
programming skills.

Self-evaluation ratings explored participants’ confidence in their ability to

perform given tasks. Poor confidence levels usually manifest themselves

in poor performance; just as high confidence levels often result in

successful attempts (Bay and Daniel, 2003). This subordinate hypothesis

was provided as part of the effort to triangulate and increase the strength

of each part of the research. Consistent results between the primary and

subordinate hypotheses were expected to enhance the strength of each of

the three statements.

3.1.5 Qualitative Structure
The qualitative portion was originally contained in three units; however,

only two of these units were successfully integrated into the overall

project. Preliminary designs for this study required the collection of

programming samples from participants. Logistically, collection of such

samples proved to be problematic, as was the ability to ensure that both

groups provided equivalent work products. Furthermore, these samples

would have been part of a graded activity, which would have been

inconsistent with the rest of the data points. The removal of this unit did

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 55
Robert J Faux, ID 109462

not impact the results of the other data in this study and the absence of

this data actually encouraged consistency in the results.

A similar set of open-ended questions appeared in both the demographic

data collection tool administered at the beginning of the CS1 course and in

the exit survey administered at the end of that course. Participants were

asked to describe what they thought the most useful and least useful

portions of the CSO class were. Measurement at the beginning and the

end of the CS1 class was intended to provide a tool for determining how

increased experience changed reactions to the preprogramming course.

Responses to all open-ended questions were hand coded using an

abbreviation-coding system. Analysis of this information was independent

of student identifiers and was not a part of paired analysis. Particularly

insightful responses and commonly recurring themes were noted as a part

of the analysis process.

In both the pretest and the posttest, participants were asked to solve four

different problems. The introductory boilerplate read to the students at the

beginning of the test encouraged the display of any and all evidence of

attempts and tools used to solve the problem. After each answer was

evaluated for correctness and clarity scores, the researcher cited evidence

of various types of problem-solving approaches or solution illustration

methods. For example, many individuals used a simple text paragraph to

communicate their solution for a given problem in the pretest. This was

noted as qualitative study information for the given student for that

particular problem. This data was maintained along with the student

identification and was available for paired analysis. Results were also

coded into common categories for the data-mining portion of the research

project.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

56

3.1.6 Data Mining Structure

The data mining process was not initially planned for this project.

However, the large number of attributes collected by the data collection

tools, combined with the number of external variables inherent to

measurements of teaching and learning, made data mining an appropriate

part of triangulating the analysis of data. Data mining results that

supported categorizing learning success based on treatment or control

group exposure were considered to be extremely valuable, since such a

grouping would have occurred despite the inclusion of several external

variables in the data. While it was viewed as unlikely that such a strong

result would occur, it was considered possible that equally valuable

information could be gleaned if few, or any, of the suspected external

variables showed strong correlations to learning. This was expected to be

an indication that exceptional circumstances did not override the

hypothesis.

The data mining process was undertaken by creating instances keyed on

the student identifier. These instances included data fields created to

represent data points from each of the four data collection tools. An

additional attribute was created to indicate if an instance was a part of the

treatment or control group, and another attribute was created to hold the

difference between pretest and posttest scores. Some data fields, such

as age, were broken down into ranges so that data could be treated as

categorical, rather than numeric/continuous in nature. Other data fields

(such as those asking about student intentions to major or minor in the

subject areas) were intended for institutional use, and these fields were

removed from the data mining format. Once records were created for

each participant, the data was mined using a trial version of the iData

Analyzer supplied as a part of the Roiger & Geatz text (2003).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 57
Robert J Faux, ID 109462

Initial attempts at data mining included all records for all participants who

qualified to be a part of the control or treatment groups. Any other records

were discarded from the file to be mined. Data mining sessions using

unsupervised clustering were initially undertaken in an effort to see if the

iData Analyzer might uncover categorizations that successfully grouped

instances that were similar to the actual control versus treatment group

breakdown. In order to do this, the data field that indicated which group a

person belonged to was masked out and not considered part of the input

data. Numerous (15) unsupervised clustering sessions were undertaken

with different combinations of attributes used as the input data for

categorization. Outstanding and representative data mining sessions

were selected from this group for analysis. Redundant sessions were

discarded, as were sessions that could not produce a reasonable (two to

five) number of categories.

Once unsupervised clustering results had been reviewed, supervised

learning analysis was performed to determine if a rule set could be

developed that would successfully classify new instances into the correct

category. Supervised clustering required the inclusion of the group

attribute (whether the instance was a treatment or control group member)

as the desired classification variable. Other attributes were selected to be

the input variables for determining the rule set. Two-thirds of all instances

were used to train the iData Analyzer and cause it to determine rules for

membership in these two classes. The remaining one-third was tested to

determine if the rule sets generated could then be accurately classified.

The ratio of control group versus treatment group members was

maintained in both the training run and the test run for supervised learning

data mining sessions, so each group was given a similar chance for

training and testing. Test results were then placed in a confusion matrix in

order to determine how well the generated rule set for class determination

worked.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

58

As with unsupervised clustering, there were multiple supervised learning

sessions performed on the data set. Input attributes were selected using

various subsets of all attributes. These choices were directed by results

observed during the unsupervised clustering sessions. Of the ten

sessions, a subset of three sessions was selected for detailed discussion.

Other data mining sessions either exhibited similar results, or extremely

poor training and test phase results.

3.1.7 Study Timeline

CSO Preprogramming - Control Group Spring Term 2000

IRB Approvals August 2000

Beginning of contact with Study Participants September 2000

CS1 Programming - Control Group Fall Term 2000

CSO Preprogramming - Treatment Group Fall Term 2000
CS1 Programming - Treatment Group Spring Term 2001

Conclusion of contact with Study Participants Early June 2001

Table 1: Study Timeline

3.2 Research Design: Sample
3.2.1 Target Population

The general target population consisted of those individuals looking to

undertake four-year, post-secondary study in the computing sciences.

Since it was not possible to take a sample from a population involving a

large set of institutions, the sample target population was limited to those

persons beginning studies in the computer sciences at two medium-sized

universities in the Midwestern United States. The results of this study are

most likely to apply to institutions with similar populations and computing

programs. However, institutions with populations for which this sample is

not fully representative may also find some value in these findings.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 59
Robert J Faux, ID 109462

3.2.2 Sample Selection
Sample selection differed slightly for each of the two participating

institutions. Neither participating school advertised a difference in the CSO

course to their respective student bodies. Members of the treatment

group and the control group were unaware of any changes made to the

pre-programming course at the point of enrollment. Further, no controls

were placed on CS1 courses in response to the altered CSO curriculum.

This resulted in a sample of the population from each group that was not

subject to self-selection issues. The resulting samples approximated a

random sample, based solely on the fact that persons registering for

courses had no foreknowledge of the study.

The BSU sample was a time-based cross section of the target population

at that school. All pre-programming sections during the Fall 2000 term

received the new curricular materials and applied them during that term.

All programming sections during both terms were involved in the study,

since all instructors of these courses were willing to participate. Thus, the

sample at BSU was representative of the entire population and can be

treated as a cohort for analysis purposes.

The MSU sample differed slightly because, as a larger school, more

sections of each course were concurrently offered. All participants in the

Fall 2000 CSO course were exposed to the new curricular materials.

However, only sections of the programming (CS1) courses with

participating instructors became part of the sample. The sample was

representative because it was extracted from a time-based cross section

of students who had no foreknowledge of which CS1 sections were run by

instructors participating in this research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

60

3.2.3 Expected Sample Characteristics
A strong majority of students in computer science programs are male and

most are of traditional college age (18-22 years). The location (Midwest

United States) increased the likelihood that participants would be of

Caucasian/European descent. The rural location made it more likely that

persons would be commuters, especially if they were from a non-

traditional age group. This rural setting also reduced the likelihood that a

diverse American minority group would have strong representation.

Computing majors do tend to draw stronger minority populations than

many disciplines; however, most of these persons are from outside of the

United States (Taulbee, 2000). There was expected to be a slightly larger

instance of Native American participants given local concentrations of this

population (Bemidji State University, 2000).

Persons participating in these courses were deemed likely to have had

success in problem-solving, computing, mathematics, or pattern matching

at a prior point in their lives (Quade, 2003). It was also considered likely

that members of the sample would have had a reasonably significant

exposure to computers, and that few would be unable to perform simple to

intermediate tasks on computing equipment. This is a contrast to

populations of students only five to ten years in the past that had little to

no exposure to computing environments (Goldweber, Barr and Leskal,

1994). It was considered possible that there would be a minority group

consisting of persons who struggled with problem-solving, computing and

mathematics; however, most individuals who fell into this category did not

meet the criteria necessary to be a member in the control or treatment

group. In fact, many of the persons who fit this description did not

participate in a CSO course.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 61
Robert J Faux, ID 109462

Finally, it was expected that the majority of students would be in their first

or second year of post-secondary education. However, the number of

later year participants is presently higher due to the increasing instance of

persons taking more than four years to graduate. Also, since more

programs grant college credit to high school students, instances of

persons reporting sophomore, junior and senior status despite the fact that

it might be a first or second year at the college was expected to be higher.

It was also anticipated that most of the students in this study were likely to

have selected these courses with the intent to major or minor for a

computing degree.

3.2.4 Classification of Subjects

Spring 2001Spring 2000 Fall 2000

Spring
2000
Program
entrants

Fall 2000
Program
Entrants

Other CSO
or no CSO
course

CSO
Control

CS1
Control

CSO
Treatment

CS1
Treatment

Figure 1: Control and T reatm en t Group Origin

Members of groups were not identified until enrollment in a participating

CS1 course and the completion of the pretest and demographic data

collection tools. These tools were implemented at the beginning of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 62
Robert J Faux, ID 109462

CS1 course and participants were given appropriate consent forms and an

option to refuse participation without consequence for their studies in the

programming (CS1) course. Since participants were not identified until the

second course, it was important to identify possible sources for entrants

into this course. Figure 1 shows a graphical representation of possible

entry points and sources of participants in the CS1 programming course.

Candidates for membership in the control group were taken from all

participants in the programming/CS1 course during the Fall 2000 term.

No records were kept with respect to performance in the CSO course, with

the exception of self-reported grades in the demographic data collection

tool. Individuals who failed to complete the CSO course, or those who

chose not to continue to CS1, were not part of the sample. Only persons

in CS1 sections with participating instructors were part of this sample (all

of BSU enrollees, selected MSU sections). The majority of persons in the

control group were expected to have participated in the Spring 2000 CSO

course; however, no control was placed on enrollment to ensure that this

was the case. Thus, it was possible that a small minority of members of

the control group might have taken an earlier iteration of the CSO course.

Of this minority, it was most likely that these persons would have taken the

course in the Fall 1999 term. The pre-programming course was not

appreciably different at that time, so these individuals were included in the

control group. Persons who received an exception to attend the

programming course without completing the CSO course were omitted

from the study.

The term of completion for the CSO course (or the lack of a CSO course)

was a data field collected by the demographics data collection tool. This

provided information that allowed the researcher to separate instances

into control, treatment, and outlier groups.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 63
Robert J Faux, ID 109462

The treatment group consisted of persons who attended the CS1 course

during the Spring 2001 term. As with the control group, the majority of the

participants in these classes had attended the prior term’s CSO course.

However, it was possible for persons who took another version of the pre

programming curriculum (or no CSO course) to attend the same course as

those who were part of the treatment group. The demographic data

collection tool implemented at the beginning of the CS1 course allowed

the researcher to identify persons in this class who had not taken part in

the modified CSO course. Persons attending CS1 during this term who

had not attended the treatment CSO course were not included as

members of the control or treatment groups.

There were a number of potential outlier instances. These individuals

were treated similarly to control and treatment group members and were

allowed to participate. However, demographic information was collected

to allow the researcher to identify these individuals so that data could be

properly partitioned. Persons who did not attend a CSO course at any

point prior to the programming course were identified and placed in their

own partition. Similarly, persons in the treatment CS1 course who were

not participants in the control curriculum were partitioned into their own

group. These outlier groups were expected to provide interesting

supplemental information, but were not the focus of the research question.

The remaining participants formed the proper control and treatment

groups.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

64

3.3 Research Design: Variables

3.3.1 Independent Variables
3.3.1.1 CSO Curricular Alterations

The goal of this research was to isolate the impact of specific curricular

modifications in the CSO course. These modifications focused on

improving the coverage of problem-solving methods and algorithm

development techniques. The research design isolated this independent

variable (changes to the CSO curriculum) as much as possible within the

constraints of working within a traditional educational domain.

In summary, the curriculum changes to the pre-programming course were:

1. Problem-solving Techniques

2. Diagramming techniques

3. Test plans for algorithms

4. Abstraction and modularity concepts

5. Collaboration methods

These changes may be viewed in detail in the Appendices of this

document. Appendix I contains all readings, examples and exercises

developed by the researcher for use in the CSO course. Additional

information for CSO instructors, as well as information for participating

CS1 instructors can be found in Appendix VII and similar information for

students resides in Appendix VIII. This section provides a general

description and justification for each modification. The existing curriculum

was strongly related to the materials found in the Schneider and Gersting

text: An Invitation to Computer Science (1999).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

65

Existing CSO Curriculum (Control) Additions to CSO Curriculum (Treatment)

Introduction to Computer Science

Ch 1 text

Introduction to Problem-solving

New reading, examples, exercises

Algorithms and Pseudocode Ch 2 text

Algorithms and Diagramming

New reading, examples, exercises

Algorithms with Pseudocode and

Diagramming: new exercises

Testing Algorithms

New reading, examples, exercises

Complexity of Algorithms Ch 3 text

Hardware Ch 4 text

Organization Ch 5 text

Team Development

New reading, exercises, examples

Ethics Ch 13 text

Software Engineering & Process Diagrams

New reading, exercises, examples

Closing Materials

Table 2: Curricular Modifications

3.3.1.2 Problem-solving
The problem-solving unit bridged the gap between non-computing related

problem-solving strategies and computing problem-solving strategies. As

an introductory course for the major, it was very important that participants

be reacculturated to a new way of thinking and working (Bruffee, 1990).

This section attempted to link common situations and problem-solving with

computer science problem-solving. In particular, the problem-solving

process was adapted in the additional curriculum to mirror a standard

generic computer science process:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 66
Robert J Faux, ID 109462

1. Understand and isolate the problem

2. Brainstorm for ideas to solve the problem

3. Design a solution that might work

4. Test your solution to see if it will work

5. Assess whether the solution is good enough to do it

This set of steps can be easily mapped to requirement, design,

implementation, and test cycles found throughout computing curricula.

However, this process was devoid of terms that necessitated definition

and could be applied to problems that had little need of excessive

explanation, which allowed the student to focus on the process, rather

than on rote memorization of multiple terms and rules.

Examples were provided in order to reinforce the processes outlined in the

reading; exercises were also provided to encourage action in learning.

Individual instructors were encouraged to implement each of these during

the class in some fashion, although exercises were not anticipated nor

required to be part of the graded materials for the class. In this section,

the examples consisted of either simple or entertaining problems, which

addressed the likelihood that there would be a wide range of ability in

each group of students. The entertaining yet difficult problems were

intended to appeal to those with greater ability and a desire to move

forward quickly. Simpler problems that required less explanation reduced

distraction from the intended focus of this component of the curriculum.

The duration of this section was brief and intended to provide a useful

bridge to the development of algorithms section. It was hoped that this

material would provide either a sufficient analogy or cement fundamental

understanding in a way that would make formal representations of

solutions more possible.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 67
Robert J Faux, ID 109462

3.3.1.3 Diagramming
The existing curriculum relied primarily on formal definitions and the use of

pseudocode in order to introduce students to the development of

algorithms. The treatment in the text was very efficient and focused on

showing examples and encouraging active attempts by the reader to write

pseudocode. Additional material provided for diagramming followed a

similar structure and was consistent in its presentation of control

structures (sequential, iterative and selection). Rather than build material

that was duplicative in nature, the new diagramming section focused on

introducing the tool and encouraged active exploration with a set of

twenty-five exercises.

This section was inserted in the curriculum in order to achieve two

purposes. First, it was hoped that the addition of a pictorially based

representation of algorithmic solutions would address multiple

intelligences in the learner. In particular, this additional tool was expected

to be useful for those who learn best from visualizations rather than text.

Second, the extra effort of encouraging students to try both diagramming

and pseudocode supported repetitions in learning while still introducing a

new tool. Simple repetition is often met with impatience, but redundancy

couched inside of new learning is important to show linkage and

importance to the learner. Thus, students were exposed a second time to

control structures and the refinement of steps into atomic units, which

accomplishes some of the ‘spiraling’ technique discussed in chapter two.

3.3.1.4 Testing
The testing section provided further emphasis on the tools of algorithm

development by providing additional examples and exercises for

developing pseudocode and diagrams. In fact, examples were evenly split

between diagrams and pseudocode and exercises encouraged mapping

from one technique to the other. The curriculum presented here also

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 68
Robert J Faux, ID 109462

began to impart the concepts of testing into the mind of the learner. In

particular, the value of testing was emphasized, as was the concept of

successful tests being those that find problems (rather than a test that

finds none). Examples illustrated how simple problems can lead

otherwise intelligent problem-solvers into making common mistakes.

This section also contained a limited set of reading material, but sizable

sections of examples and exercises. The content at this point became

more technical in nature and included a greater number of terms and

concepts. However, problem sets still utilized material that was easily

understood and could be explained quickly to the student. Thus, this new

piece of the curriculum successfully provided another iteration on

algorithm development while providing new and useful information that

could be applied at later points in learning.

Furthermore, this section began to encourage students to look critically at

proposed algorithmic solutions by checking for accuracy. The next section

concentrated on algorithm complexity and efficiency, which is also a

process of critically assessing solutions. However, the prior curriculum did

not provide material to emphasize correctness, so this section of material

introduced the students to critical analysis of algorithms by using the

simple idea of whether the solution will output results that mirror correct

solutions. This was expected to result in an increased willingness to

explore an algorithm more carefully after its creation, opening students up

to the idea that how well the correct solution is accomplished is also

important.

3.3.1.5 Team Development
The team development section was intended to begin to prepare students

for the introduction of team projects in future computing courses, as well

as the inevitable project team in the “real-life” development of computing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 69
Robert J Faux, ID 109462

projects. This section provided a very brief summary of roles often found

in the real world projects in order to emphasize the applicability of these

concepts. It then quickly refocused on how one can successfully work in a

group as a student in a class. Simple concepts covered in the reading are

as follows:

1. Strive for continuous improvement versus delayed perfection!

2. Avoid the Hero Syndrome

3. Pay now, instead of later.

4. Paper trails - being followed can be a good thing.

5. To collaborate, you must communicate

Each of these sections encouraged equal and consistent participation of

all members of a group. Problem design and problem-solving again made

an appearance, as did the documentation of solutions and decisions (in

the form of diagrams or algorithms). A discussion on conflict within the

group was included as a reminder that there is a difference between

positive and negative conflict. Rather than relying on a class lecture on

this subject, an in-class exercise was provided to the instructor. The

exercise encouraged problem identification and prioritization as well as

solution negotiation. Communication skills were exercised as the activity

was broken down into a ‘jigsaw’ formation, which encouraged each

individual to be able to explain and discuss details of their subtopic. This

course segment was intended to last no more than one class period and

was built to lead into the ethics portion of the class.

3.3.1.6 Abstraction and Modularity
This section provided students with an introduction to software

development language and processes prior to actual attempts to program.

This section should be characterized as the logical equivalent to the

detailed sections on hardware, data representation, and machine

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 70
Robert J Faux, ID 109462

organization that appeared in chapters four and five of the text. Although

much background was provided for hardware and discrete structures, little

attention was given to this topic in the existing curriculum. It made sense

to include an introduction to software engineering or software

development processes, since the following course in the curriculum

focused on building software by programming.

This section paralleled the problem-solving and algorithm development

sections by renaming the five-step problem-solving process in terms

typically found in software engineering circles. Organization for larger

problem solutions was covered in this section and process diagrams were

included in order to provide a useful visualization tool for modularization.

Important software development concepts and terms (such as cohesion,

abstraction, scope, and modularity) were included in this portion of the

materials. Top-down (divide and conquer) and bottom-up problem-solving

methods were outlined; the exercises included problems that illustrated

these approaches, as well as cohesion and abstraction.

3.3.2 Dependent Variables
The dependent variables were defined as a result of the alternate

hypothesis and the two subordinate hypotheses. Each of the subordinate

hypotheses dependent variables are discussed prior to the alternate

dependent variable since these were used to support conclusions about

the more general variable.

3.3.2.1 Satisfaction in the CSO Course
One of the two subordinate dependent variables was the measure of

satisfaction students had with the CSO course. It was hypothesized that

the independent variable, consisting of the changes outlined in section

3.3.1 for the curriculum, would positively impact satisfaction with respect

to the applicability of the CSO course. This satisfaction was measured at

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 71
Robert J Faux, ID 109462

the beginning and the end of the CS1 course in order to determine if

additional exposure to the subject area provided participants with a

different perspective for the CSO course.

3.3.2.2 Self-Confidence in Skills
The second subordinate dependent variable focused on self-evaluation by

participants of their ability to program, problem-solve, perform

mathematical calculations, and work with a computer. In particular, this

variable was concerned with measuring student confidence in

programming skills. Measurements were taken at the beginning and end

of the programming (CS1) course, which provided a baseline data point

that could be used to determine growth in confidence by participants.

3.3.2.3 Programming Ability
Programming ability was the primary dependent variable for this research

project. It was hypothesized that students would learn to program better if

they were exposed to the new curriculum materials than if they were not,

so programming ability was measured by collecting data points at the

beginning of the CS1 course in the form of a pretest. Since participants

could not be expected to program at that point in time, the test consisted

of problems that could be solved using words, pseudocode, diagrams, or

other techniques known to the student. A second set of data points was

collected at the end of the CS1 course in the form of a posttest. This test

included four programming problems of varying difficulty, allowing

participants to provide evidence of their skill at the end of the course.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

72

3.3.3 External and Environmental Variables

3.3.3.1 Instructional Differences in CSO
Participating instructors were given new materials and a suggested outline

for coverage after they were consulted about the existing course format. It

was agreed that these materials would be taught with the intended order

of integration into the course as a whole. On completion of the term

during which the treatment group attended CSO, instructors of this course

were allowed to do with the curricular material as they saw fit. However,

during the treatment term, teachers followed the structure, used the

examples and exercises and provided students with the resources

developed by the researcher.

Curricular changes do not necessarily imply changes in teaching method

by the person facilitating the course. While it is clear that participating

course facilitators used the new materials and followed the provided

format, it is impossible to conclude that presentation by one instructor

would match that of another instructor. Since there was certainly variation

in the actual application of this curriculum, there may have been variation

in the measured effectiveness of the curriculum. Fortunately, the same

individual was responsible for teaching the CSO course for both the control

and treatment groups at each school, so differences in instruction were

largely isolated to the curricular changes themselves. However, there was

still a possibility that the instructor taught the course differently, especially

if the instructor was excited by the new curriculum. In that case, students

might have performed better because of this enthusiasm displayed by the

instructor, more than any other reason (Cook, 1967).

3.3.3.2 Instructional Differences in CS1
The difference in CS1 instructors had more potential impact on this study

than possible differences in the CSO instructor. Two different instructors

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 73
Robert J Faux, ID 109462

taught BSU CS1 courses, with one teaching the control group and the

other the treatment group. The CS1 curriculum was similar for both terms,

but instructor implementation may have differed significantly. MSU

courses were taught by four different participating instructors, with several

other non-participating instructors teaching concurrent courses. In this

case, there was a difference in instructor between control and treatment

groups, as well as a difference for members within these groups. This

study measures programming skill and how it is impacted by the CSO

curriculum; therefore, other factors that might influence the growth of this

skill cannot be discounted. For example, an excellent CS1 instructor may

facilitate better learning in one class as compared to a poor instructor in

another. It was possible that instructor ability could sway the results of

this research in favor of either the control or the treatment group, and thus

obscure the true impact of the curricular changes (Black and Deci, 2000).

Although it was possible that measurements would be skewed by

instructor differences, the triangulation in the research design was

expected to limit the impact of this external variable. Student evaluation of

the CSO course was independent of the instruction provided in the CS1

course. In other words, it was unlikely that different instructors would

greatly impact student opinion about the prior course. Furthermore, open-

ended questions in the demographic data collection tool and exit survey

provided participants with an opportunity to suggest factors that had

strong impact on their learning. It was anticipated that exceptionally

strong or poor teaching performances would be noted in the qualitative

analysis. However, it was deemed likely that instructor quality would be

within the range of typical norms and that it would not be sufficient to

overcome data agreement for hypothesis and subordinate hypotheses.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

74

3.3.3.3 Class and Term Dynamics
Each student group has a unique dynamic that is a product of the

participants, the facilitator, the time and the environment (Brookfield,

1991). Therefore, it is impossible to claim that any two groups in a study

of learning are equivalent, just as it is impossible to claim that any two

learners are equivalent. Some groups may have been more open to the

new curriculum than others, and some groups may have simply been

more able to succeed in learning programming than others. This could

have been true even if both groups contained individuals with relatively

similar potential for success.

The nature of the sample provided this research with a representative

group by taking a time-based cross section of the population. This

method of sample selection created an effectively random sample on

which standard statistical tests could be made. Therefore, differences in

group dynamics were handled primarily by randomization of the sample.

Characteristics between student groups during fall and spring terms could

also have differed depending on program structure. Frequently, programs

will see the majority of entrants in the fall term, with a reduced set in the

spring term. Sometimes, the second set of students consists of persons

who are less certain of their ability to perform in the program.

Furthermore, fall terms are usually preceded by an extended summer

break, which may affect the retention of prior learned concepts. Neither

BSU nor MSU exhibited drops in enrollment that would indicate that this

sort of issue held for these schools. However, as other natural differences

brought about by different terms could still have impacted the research

data, a triangulated study was undertaken in an effort to address this

external variable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 75
Robert J Faux, ID 109462

3.3.3.4 Learner Preferences and Background
Students bring with them a set of learning preferences and a set of

experiences from which they can draw as they learn (Eble, 1990). The

personal nature of learning makes it extremely difficult to generalize the

success of any treatment intended to supplement learning (Diseth, 2003).

It is even possible that such generalization is detrimental to learning in

many cases. However, this study has been undertaken in order to identify

tools and concepts that provide a valuable foundation for learning

programming, which is a key component for any computing degree

program. The personal nature of learning was addressed by collecting

data at two points in time and pairing these results. This enabled the

researcher to focus on areas of growth for each individual, rather than

forcing all individuals to be compared with a norm.

3.3.3.5 Environmental Variables
Other environmental variables (such as the classroom, time of day, and

class size) can have a decided impact on learning (Wilson and Shrock,

2001). These variables are also outside the control of the researcher.

Class sizes between control and treatment groups were similar, but no

data was collected on other factors. Triangulation and the cross-sectional

nature of this study help to offset some of these factors, as does

participation by several instructors with a varied set of times and

classrooms.

3.3.3.6 Study Deployment Variations
A complete set of instructions, including a boilerplate introduction, was

given to each CS1 instructor for deployment of this study. However, the

researcher was not able to oversee this effort directly and contact was

maintained with participating instructors from a distance. There was a

distinct possibility that the implementation of the data collection tools

would be undertaken differently in each class. Multiple data collection

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 76
Robert J Faux, ID 109462

points, method triangulation, data point redundancy, and full cross

sectional participation were expected to work to counteract these issues

and to reduce validity and reliability concerns.

3.4 Research Design: Data Collection Tools
3.4.1 User Identification Numbers to Support Paired Analysis

Each data collection tool included a clearly marked data entry point at the

top for the participant to enter their student identification number. These

numbers were used in lieu of names or characteristics that could

inadvertently identify individual students to the researcher. Correct entry

of the identification number for each of the four data collection tools was

necessary for a full instance to be recorded in the research data. Correct

entry of the identification number was critical for the success of this study,

since failure to provide correct identification would result in data points that

could not be linked under a single student. This would produce posttests

with no matching pretest, demographic data with no matching qualitative

data, and other mismatches. Failure to pair data points would lose

information necessary to identify outlier status, so it would not be possible

to conclude that data belonged to a member of a control or treatment

group with any certainty. Therefore, it was necessary to remove any

recorded data records that could not be conclusively matched with

corresponding data collected by other collection tools.

3.4.2 Demographic/Entry Data Collection Tool

The demographic, or entry, data collection tool served multiple purposes

in data collection. Demographic information for each participant was

collected at the beginning of the CS1 course with this tool. Among the

demographics were necessary questions to determine whether the

participant was a member of the control, treatment, or an outlier group.

Baseline information was taken for each individual’s rating of their own

abilities so these ratings could be compared with a second self-evaluation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 77
Robert J Faux, ID 109462

at the end of the course. Similarly, participant opinions with respect to the

CSO course were collected at this point, and again at the end of the

course in the exit survey. Finally, open-ended questions were used to

gather supplemental information about participant opinions regarding the

CSO course and their anticipation for the upcoming CS1 class. Samples

of this data collection tool can be found in Appendix II.

Demographic data points were selected for collection based on one of two

reasons. The first reason was to illustrate that the sample population was

representative of the general population of potential students that would

participate in a computer science degree program at institutions similar to

the subject universities. The second purpose was to collect information on

characteristics that might influence individual success in a computing

degree program. This information was collected once, at the beginning of

the CS1 course, as a part of this data collection tool. Data was collected

solely by self-disclosure and secondary tools were not used to verify this

information.

Standard demographics such as gender, race, and age were collected to

gain a picture of the diversity within the groups. This information was

used to determine whether the sample was typical of most student groups

at the subject institutions. However, this data was also used to partition

other data points to see if a particular gender, age, or race exhibited

greater change than other subgroups.

Demographic data related to the individual’s academic status was also

collected. Data points included year in school, typical high school grades,

college grades, and the grade received in the pre-programming (CSO)

course. This information provided a baseline status for each student, and

also produced information that could be used to develop typical student

profiles at this point in the program. This data was used to partition

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 78
Robert J Faux, ID 109462

instances based on academic experience. For example, these pieces of

information made it possible to analyze whether the CSO grade was a

predictor for success in the CS1 course. Persons who did not complete a

CSO course were asked to circle “Not Applicable.” Individuals who did

report a CSO grade were asked to identify the semester and year of

completion. This information allowed the researcher to identify any

outliers in the control or treatment groups.

Environmental or personal demographic data that could potentially impact

learning was collected by soliciting responses on disabilities and

competing activities. Participants were asked to indicate whether they

were parenting, commuting, or employed outside of school. Each of these

pieces of information might indicate competition within the individual’s life

for time or energy that could otherwise be spent on the course of study.

The subject was also asked to identify any learning or physical disabilities

that provided an additional challenge to their success in the course. This

information was gathered in an effort to identify possible overriding factors

that could have impacted learning. No strong patterns were exhibited for

these data points, so little work was done with them in analysis.

Finally, data were collected on the participant’s plans for future study in

computing sciences. This information was gathered solely to determine if

the sample population did represent a population that expected to

continue with studies in the program. Anticipated future study indicated

that the student expected to apply concepts learned in these courses in

the future. If no such pattern existed in the population, it would have

become apparent that the sample was not representative of the group the

study hoped to research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

79

3.4.3 Self-Evaluation

The self-evaluation portion of the data collection tool consisted of five

questions that collected ordinal data. Each question asked the participant

to rate their level of comfort with a different task or concept. A value of

‘one’ indicated that the individual felt the task or concept was very difficult

and a value of ‘five’ indicated that they felt it was very easy. Three of

these questions measured comfort in working with tasks or concepts that

are traditionally felt to be parts of the foundations of programming and

computer science. The final measurement attempted to determine the

individual’s baseline comfort with programming.

Rate your level of comfort with computers

Each participant was asked to indicate (on a scale of 1 to 5, with 1 being

low) how he or she felt about using computers. It was anticipated that

most subjects would respond with an average to high level of comfort with

computers upon entry to the CS1 course. Individuals beginning the

course with a low baseline score were indicating that they believed they

have an additional learning curve to climb in addition to course objectives.

Rate your level of comfort with math

The link between computer science and mathematics is both historical and

conceptual in nature. Although it was expected that a majority of

respondents would indicate average or higher comfort in this area, there

has been an observed trend towards more computer science students

who have less comfort in math skills. This data point provided the

researcher with a method of determining whether or not a partition might

be indicated by comfort in mathematics for programming skills. It was

deemed possible that persons with weaker math skills might benefit more

from the treatment curriculum. However, it was also considered possible

that poor mathematical skills might have a stronger correlation with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 80
Robert J Faux, ID 109462

programming success. Therefore, this data point was included in the data

collection process.

Rate your level of comfort with problem-solving

One of the contentions of this study is that problem-solving skills lead to

an increased ability to learn how to program. It was expected that most

individuals would identify themselves as being average or better problem-

solvers. However, it was considered possible that members of the

treatment and control groups might identify this category differently. A

significant difference in the numbers for this attribute was viewed as an

indication that there was at least some impact on self-perceived problem

solving skills.

If you have programmed before, rate your level of comfort with

programming

Respondents were instructed to leave this question unanswered if they

had no programming experience to report. It was expected that a

significant portion of respondents would leave this question blank on the

demographics data collection tool. However, answers to this question

provided information about prior knowledge owned by individual members

of the learning group. Of particular interest would be any partition of

subjects who identified no prior knowledge or very poor comfort with

programming against those who declared strong comfort with

programming at the beginning of the class.

3.4.4 CSO Satisfaction
How useful do you think CSO will be for your success in this (CS1) class?

This question was also rated from one to five, with one being low. A low

score was classified as a ‘waste of time’ and a high score as ‘extremely

helpful.’ This data point measures satisfaction by equating it with

perceived applicability. Data collected at the beginning of the CS1 course

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 81
Robert J Faux, ID 109462

provided a baseline, as it was deemed unlikely that subjects would have

sufficient information to accurately gauge the value of the prior course for

one they had barely begun. However, this information was important to

gauge initial perceptions of satisfaction so that any changes could be

identified. Persons who did not complete a CSO course were instructed to

omit an answer to this question.

3.4.5 Qualitative Data

Three open-ended questions were included in the demographics data

collection tool. These questions were intended to capture supplemental

information that could be used to support patterns found in the quantitative

data.

What were the most useful and least useful parts of the CSO course?

This question was effectively paired with the rating of satisfaction provided

in the prior data point. The wording of the question was intended to bring

out free response about parts of the prior course that were perceived as

helpful or as a ‘waste of time.’ It was anticipated that persons who rated

the course as being wasteful would have stronger feelings for the least

useful portions of the pre-programming course. It was also hoped that

patterns in responses might indicate subject areas that were perceived as

more or less useful. Pattern changes between the control and treatment

groups were viewed as potential support for other data.

What are you most looking forward to in this (CS1) course?

What are you most worried about in this (CS1) course?

These two questions were intended to capture any patterns in the

expectations and anticipations of students. It was expected that most

commentary would include references to grades or learning to program.

However, this data was collected with the knowledge that special

circumstances, unknown to the researcher, could be revealed in this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 82
Robert J Faux, ID 109462

fashion. If a strong pattern appeared out of the norm in these responses,

it would be deemed likely that the sample was not representative of the

target population.

3.4.6 Exit Survey Data Collection Tool
Samples of the exit survey can be viewed in Appendix III.

3.4.6.1 Demographics
The only demographics collected by the data collection tool pertained to

the respondent’s intentions to continue to study computer science on

completion of the CS1 course. This data served the purpose of

determining whether the sample remained representative of the target

population by showing that members still intended to continue with studies

in computing. However, it also served an additional purpose for the

participating institutions; it gave them a picture as to how the CS1 course

changed program of study intentions.

3.4.6.2 Self-Evaluation

The same four questions were asked in the exit survey so they could be

paired with the results in the demographics tool. The only difference was

a rewording of the fourth question: the qualifier “if you have programmed”

was removed. The only rating expected to show significant change was

the self-evaluation rating for programming. Although it was considered

possible that other marks would exhibit change, it was not expected to be

significant.

3.4.6.3 CSO Satisfaction
The satisfaction question was worded similarly to that found in the

demographics data collection tool. A second data collection point

measured perceptions of applicability after the participant was more

completely aware of the needs exhibited in the CS1 course. A severe

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 83
Robert J Faux, ID 109462

decline in satisfaction would have indicated that anticipated usefulness

was proven to be unfulfilled. This might also have been an indication that

the CSO curriculum did not, in the opinion of the student, support the

needs of the CS1 student. On the other hand, a less pronounced decline

would have served as an indication that the subject had become more

critical with additional knowledge, but that the CSO module withstood a

more critical test once the student had obtained more complete

knowledge.

3.4.6.4 Qualitative Data

Qualitative information in the exit survey was collected from the

perspective of reviewed events, rather than that of anticipation for new

events (which was the entry tool’s goal). The first two questions remained

the same. It was expected that patterns for most useful and least useful

parts of the CSO course would adjust based on improved ability to see

what tools were actually helpful in the CS1 course. The second two

questions differed in both style and content.

Is there anything that you think should have been covered in the CSO

course that would have helped you in this programming course?

Do you have any suggestions that can help us to improve the CSO or CS1

courses?

These questions were intended to encourage open-ended response by

students as to how they might improve the CSO course. It was anticipated

that a significant subset of participants would be willing to share useful

insights about this course when asked. However, it was also anticipated

that subjects would be inclined to keep answers short due to time

constraints in data collection. Significant patterns in responses to these

questions were intended to serve as suggestions for additional curricular

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 84
Robert J Faux, ID 109462

reform, or to contradict or support the reforms implemented for the

treatment group.

3.4.7 Pretest

There were two versions of the pretest provided to participating

instructors. Only the first and last questions differed in these pretests.

These versions were distributed alternately to participants and results of

both versions were checked for consistency. Samples of the pretests

may be viewed in Appendix IV.

Question 1: Algorithmic Problem-solve

The algorithmic problem-solving problem consisted of a problem that

required a combination of selection and comparison operations in order to

test participant ability to identify all options and choice paths. The actual

problem differed between the two pretest versions, although each included

multiple leaves on a solution tree. Solutions for this problem required

some sort of clear organization for clear presentation of the proposed

process. Therefore, it was expected that pseudocode or diagram

representations would provide some of the more concise definitions of

proposed solutions.

Persons completing this problem by identifying all possible options and

providing an algorithmic solution that correctly produced all possible

answers were given a full score out of five points. Absence of one or two

obscure cases resulted in a rating of four points. Absence of multiple

cases within a reasonable framework or structure for the solution resulted

in an average score (three of five). Persons with the beginnings of a

reasonable solution received a two and persons with hints of useful work

received a one. Failure to work on the problem resulted in a zero for the

question.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 85
Robert J Faux, ID 109462

Question 2: Mathematical Problem-solve

The mathematical problem-solving question asked the participant to

convert a number given in minutes to a representation given in years,

days, hours, and minutes. The problem used a subject that was expected

to be well known to all participants and to require no special knowledge

beyond the ability to understand common time partitioning units. This

problem exercised mathematical problem-solving abilities and also

checked for the subject’s awareness of exceptions (such as a leap year).

This problem additionally exercised the ability to work with variables and

understand how variables change or stay the same depending on the

operations selected. It was anticipated that this problem would require

some sort of structured algorithm representation in conjunction with

mathematical calculations in order to clearly demonstrate a successful

solution.

As before, a correct solution that clearly demonstrated steps to arrive at

the answer, regardless of possible exceptions, received a perfect score. If

the solution exhibited some confusion about numeric data carried through

in a variable, the answer was given a score of ‘four.’ Failure to properly

carry through the remainder to calculate new amounts resulted in an

average score, and a reasonable structure for the solution with no working

components received a ‘two.’ As with other questions, a single point was

awarded for minimal effort and a ‘zero’ for no effort.

Question 3: Large Problem-solve

This problem asked the subject to outline a strategy for building a program

(without actually programming) to play a game that they know (examples

of chess, checkers, go, and bingo were given). The intent of this question

was to ascertain relative strengths in determining scope and organizing

complex problems. It was expected that most participants would perform

an average to poor job of attempting to outline the problem domain and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 86
Robert J Faux, ID 109462

create a reasonable strategy for the problem. However, the question was

included in order to help identify those with exceptional skills. Better

solutions were expected to use a combination of algorithms, diagrams,

and words to illustrate structure, scope, and process.

An average score for this problem was awarded for those who

successfully managed to provide a clear strategy from one perspective of

the problem. For example, a potentially successful functional breakdown

would receive an accurate score. Additional marks were awarded if other

perspectives in identifying and strategizing a solution supplemented the

single perspective. For example, a functional breakdown that included

some attempt to identify data structure would receive additional marks. A

score of ‘two’ indicated that a reasonable attempt to organize the problem

was made and a ‘one’ indicated that a poor attempt was observed. A

‘zero was reserved for those who made no effort to answer the problem.

Question 4: Brainteaser Problem-solve

A brainteaser question was included to test the participant’s ability to

identify a problem and its key components. The solution to this problem

was not intended to be presented as an algorithm, although subjects were

encouraged to show all ideas and thoughts that they tried to use in solving

the problem. It was anticipated that answers would be accompanied by

text and graphical representations to either attempt to solve or explain the

solution to the problem.

Persons with the correct answer, regardless of supporting documentation,

received a perfect score for this problem. The actual distance from the

correct answer was used to determine the score for the problem. Answers

with incorrect solutions but correct processes received additional credit.

Processes with no answer also received credit for the solution. Only

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 87
Robert J Faux, ID 109462

problems with no effort to show a process or a reasonable answer were

given a ‘zero’ score.

3.4.8 Posttest
The posttest included four questions that called for answers written in a

programming language. Participants were encouraged to show any tools

or illustrations that helped them write their code samples. None of these

samples were intended to be fully working programs and simple formatting

mistakes were ignored in assessing answer accuracy. Examples of the

posttest may be viewed in Appendix V.

Question 1: Simple Swap

The first question was selected based on the ease with which it could be

explained to the participant and the expected likelihood that most subjects

could find some success in writing code to solve the problem. Answers

were to be couched in a function (C++) or a method (Java). However,

correct solutions without these trappings still received high marks (4 of 5

points). Answers that failed to illustrate the ability to track the values of

variables, but that otherwise exhibited a procedural structure that

approximated the correct solution, were given three of five points. Varying

degrees of effort that provided incorrect solutions were given scores of

‘one’ or ‘two.’ Persons who provided no evidence of an effort to solve the

problem received a zero for this data point.

Question 2: Palindrome

The first question was selected based on the ease with which it could be

explained to the participant and the expected likelihood that most subjects

could find some success in writing code to solve the problem. Answers

were to be couched in a function (C++) or a method (Java). However,

correct solutions without these trappings still received high marks (4 of 5

points). Answers that failed to illustrate the ability to track the values of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 88
Robert J Faux, ID 109462

variables, but that otherwise exhibited a procedural structure that

approximated the correct solution, were given three of five points. Varying

degrees of effort that provided incorrect solutions were given scores of

‘one’ or ‘two.’ Persons who provided no evidence of an effort to solve the

problem received a zero for this data point.

Solutions that failed to handle the ‘odd length’ case, but were otherwise

correct, received four of five points. Similarly, solutions that were not

written as a function or method had their score reduced by a point. Thus,

answers that were not in this format and that were missing the special

case were rated as average answers at three points. Some effort in

solving the problem received one point, while submissions that showed

evidence of being at least partly correct received two points.

Question 3: Big X

This question required less effort to understand the intent and scope of the

problem, but included more subtle nuances in both the algorithm and the

program code. As with other problems, answers that had a structure that

could house an entirely correct answer (provided they were ordered

correctly or all cases were identified) received average marks. Ratings

followed a similar structure to previous questions.

Question 4: Large Problem

The large problem was a companion to the large problem found in the

pretest. In this case, the participant was asked to identify

method/functions definitions and variables necessary to help a school

schedule classes. Essentially, this problem asked students to identify the

parts of a program necessary to solve the large problem without requiring

that they write specific code segments. The problem did not require a

great deal of explanation so that concentration could be maintained on

attempting to solve the problem. Scoring this problem was based on

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 89
Robert J Faux, ID 109462

coverage of the scope of the problem, with an adjustment downward by

one point if the code format for the proper language was not evident.

3.5 Responsibilities of Participants
Student Participants I Subjects

♦ Subjects were asked to listen to a description of the study and the

informed consent boilerplate.

♦ Subjects read and signed the informed consent form.

♦ Participants were asked to complete all forms in their entirety during

the time allotted and to provide honest and thoughtful answers.

♦ Students were asked to use their student identification number for

pairing purposes on the data collection tools.

♦ Subjects were encouraged to contact the researcher of their instructor

if they had questions about the study.

♦ Participants completed the demographics data collection tool at the

beginning of the CS1 course.

♦ Students completed the pretest and were instructed to show as much

evidence of their approach to solving the problems as they could.

♦ Participants completed the exit survey at the end of the CS1 course.

♦ Subjects completed the posttest and were instructed to show as much

evidence of their approach to solving the problems as they could.

Participating Faculty and Departments

♦ CSO instructors negotiated with researcher on content of material

provided for pre-programming course.

♦ Participating CSO instructors implemented course with curricular

modification during Fall 2000 term.

♦ CSO instructors reported inconsistencies or problems with the new

CSO materials in a timely fashion for correction and use during the Fall

term.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 90
Robert J Faux, ID 109462

♦ CSO instructors were granted continued use of any and all new

materials created by the researcher.

♦ Participating CS1 instructors agreed to remain in contact with the

researcher during the Fall 2000 term (control group) and the Spring

2001 term (treatment group).

♦ CS1 instructors agreed to read the informed consent boilerplate to

participants, collect signed informed consent forms and serve as first

contact for participants in the study.

♦ CS1 instructors administered a demographic data collection tool and a

pretest on the first day of the programming courses (CS1) in the Fall

2000 and Spring 2001 terms.

♦ CS1 instructors administered an exit survey and a posttest at the end

of the CS1 course during the Fall 2000 and Spring 2001 terms.

♦ CS1 instructors delivered all documents (informed consent, pretest,

posttest, demographic survey and exit survey) to the researcher.

♦ CS1 instructors were asked to report any requests to be removed from

the study during the term.

♦ Departments were asked to support the researcher in completing the

standard research review board process for each school.

♦ Departments were asked to confirm that the first programming course

(CS1) would not undergo a major change in approach during the Fall

2000 and Spring 2001 terms.

♦ Departments were asked to confirm that the CSO course was intended

as the entry-level course for the major.

♦ Departments were asked to confirm that the CSO curriculum had not

significantly changed in ways different than those proposed by the

researcher.

Researcher

♦ The researcher negotiated with faculty regarding the content

modification to pre-programming (CSO) course.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 91
Robert J Faux, ID 109462

♦ The researcher developed supplemental material for use in the pre

programming (CSO) course on those subjects agreed to by the

participating instructors and the researcher. Material included notes,

examples, and exercises that supplemented those provided by the

Schneider/Gersting text.

♦ The researcher developed a demographics data collection tool, exit

survey, pretest and posttest for use in this study.

♦ The researcher encouraged discussion and negotiation of data

collection tool design prior to the Fall 2000 start date for the study.

♦ The researcher provided departments with proper research consent

forms for student participation.

♦ The researcher maintained contact with participating instructors and

provided resources for participating students.

♦ The researcher maintained the anonymity of participants in the study.

3.6 Review Processes
The anonymity of participants in this study was maintained by use of a

student identifier, in lieu of a name, to link data points between data

collection tools. Individual data was further protected by the substitution of

a generated identification number once all data points were combined into

single records. No identifying information appears in this document or its

appendices, or will it appear in any other report related to this research.

Instructors were not given individual responses to the demographic tool or

the exit survey, nor were the pretest or posttest used for grade

assessment purposes. Participation or non-participation in this study had

no bearing on student participation in either the CSO or the CS1 course.

The CS1 curriculum was not modified in any way to take advantage of

changes to the CSO curriculum, so students in the control or outlier groups

were not disadvantaged by assumed knowledge built into the second

course.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

92

Each participant was given a human subject consent form at the beginning

of the programming (CS1) course and an opening statement was read to

participants prior to any data collection. All members of participating CS1

sections were given the option of accepting or refusing participation at this

time. Participants agreed to participate in the study when they signed the

consent form and submitted it to the participating instructor, who then

forwarded these materials to the researcher. Subjects were reminded that

they could remove themselves from the study at any point in the process,

although there were no recorded instances of persons exercising that

option. A copy of the informed consent document may be viewed in

Appendix VI.

Since this research involved human subjects, Institutional Review Board

(IRB) processes were followed for each of the subject institutions at BSU

and MSU. Additionally, the researcher submitted materials to the Union

Institute and University (UIU) IRB for approval. Each of these boards

gave unconditional approval for this research project. Submitted materials

and approvals can be seen in Appendices IX (UIU), Appendix X (MSU)

and Appendix XI (BSU).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

93

4 Findings

4.1 General Observations

4.1.1 Identification of Outliers
Outlier instances were defined as respondents for which data was

collected as a part of the CS1 course, but who for various reasons were

removed from the sample set. In order to be a part of the sample,

individuals were required to have completed the CS1 course and both the

pre and post data collection tools for the study. Those failing to complete

the CS1 course were eliminated since no end of class data had been

collected to measure growth. Participants were also required to have

attended a qualifying CSO course. Those participants who had either not

attended a CSO course, or those who had attended a CSO course at

another institution or during a term prior to the time frame of the research,

were identified as outliers. Finally, data records that could not be matched

with corresponding entries for other data collection tools were removed

from the sample, as failure to match records made it impossible to perform

the necessary paired analysis.

Although some incomplete data records were omitted from analysis

entirely, other outlier records provided useful supplementary information.

For example, data collected for persons who did not complete the CS1

course were collected in an effort to see if there was a pattern

corresponding to retention in the programming course. Data for persons

who completed the CS1 course but did not participate in the appropriate

CSO session were also maintained. In the case of the Spring 2001 class,

most members completed the treatment CSO course the previous fall

term. However, some individuals did not attend the anticipated CSO

course, making them, in effect, a second control group. Outlier records

comprise a secondary focus of discussion in this report.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

94

Outlier types for the Fall 2000 term included:

• Persons who completed CS1 and had no CSO

• Persons who did not complete CS1 and had qualifying CSO

Outlier types for Spring 2001 term included:

• Persons who completed CS1 and attended non-treatment CSO

• Persons who completed CS1 and had no CSO

• Persons who did not complete CS1 and had no CSO

• Persons who did not complete CS1, attended non-treatment CSO

• Persons who did not complete CSIand attended treatment CSO

4.1.2 BSU Sample
The Bemidji State University (BSU) data records were matched by student

identification number, which allowed the researcher to complete an

accurate picture of results for this school. It was determined that a

qualifying CSO course for the control group could include participation

during the previous academic year; however, earlier attendance

disqualified the participant from the control group, since it could not be

successfully verified that the curriculum was the same in prior years.

Furthermore, an extensive gap between courses naturally precluded

inclusion in the control group. Few students attended CSO in a term other

than the Fall 2000 term, and as these persons failed to complete the

course, they were eliminated from the control group.

As can be seen in Table 3, the enrollment for both courses was roughly

similar, as was the completion rate (75.8% for the fall and 72.5% for

spring). The greatest difference between the two samples was the

composition of the outlier groups. Obviously, the definition for the control

Enrolled Completed Outliers Sample Size (n)
Fall 2000 33 25 1 24
Spring 2001_______ 29______ 21_______11________ 15

24
15

Table 3: BSU Sample

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 95
Robert J Faux, ID 109462

group was broader, selecting candidates who had attended the pre

programming course during one of two terms. However, additional data

records that might have been added by this expanded definition were

eliminated by non-completion. Two individuals completed the end of term

data collection tools, but were not present to complete the beginning of

term data collection tools, which explained part of the difference between

the samples. This data could not be used, as there were no informed

consent materials for these persons on file; therefore, these materials

were eliminated without data analysis.

No CSO Wrong CSO no Pretest
Fall 2000 1 0 0
Spring 2001___________________________ 1__________3_________2

Table 4: BSU Outliers Completing Course

Outlier records for persons completing the CS1 course were not

numerous, with one in the fall and six in the spring, of which five were

identified as persons who had not taken a qualifying CSO class (see Table

4). Interestingly, the same number of persons (five) failed to complete

from the outlier groups (see Table 5). This indicated that persons in the

outlier groups (with the exception of the two without a pretest) were

equally as likely to succeed or fail in the programming group.

No CSO Wrong CSO
Fall 2000 0 0
Spring 2001____________________________4________ 1

Table 5: BSU Outliers Failing to Complete

During both terms, eight individuals failed to complete the CS1 course. In

the control group, none of these individuals fell into an outlier class; all

eight had attended a qualifying CSO course during the previous academic

year. In the treatment group, five of those who failed to complete the

course either had no CSO course (four) or had attended a non-treatment

CSO course (one). This left only three persons in the spring term who

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

96

failed to complete the CS1 course after completing the treatment CSO

course.

4.1.3 MSU Sample

Beginning Ending Matched No CSO Wrong CSO Eligible Match & Sample
Fall 2000 43 36 5 5 4 3 4 4
Spring 2001_______ 47 30 22 4________ 4________39________ 20

Table 6: MSU Sample

Unfortunately, multiple student identification numbers were given to

Minnesota State University at Mankato (MSU) students. Not only did

enrollees in these courses have a student identification number, they were

also assigned a technology identification number. Additionally, some

persons considered their social security number to be an appropriate

identification number. Participating instructors described the need for

students to consistently identify themselves with varying success. As can

be seen in Table 6, only five of the thirty-six ending data records could be

matched successfully to the beginning (pretest, demographics) records.

There was somewhat better success during the spring term, but again

eight of the ending records failed to match a beginning record. Failure to

match records made it impossible for the researcher to determine whether

a participant belonged in the control or treatment groups, so no

meaningful paired analysis could be performed on data collected for the

study from MSU. Although the treatment set reached a reasonable

sample size, a treatment set without a corresponding control set was

useless for paired analysis the MSU data were discarded. The

remainder of the discussion will focus on data collected from the BSU

population.

4.2 Demographics
4.2.1 Personal Demographics

Personal demographics collected consisted of gender, race, and age

attributes. This information was collected to determine if both control and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 97
Robert J Faux, ID 109462

treatment groups were representative of the normal population found in

the CS1 course. It was also used to partition data in data mining sessions

in order to look for patterns based on these attributes.

Control Group Gender Breakdown

Unknown

Ferrate
29%

Treatment Group Gender Breakdown

Unknown
7%

Female J
33%

Table 7: Gender Breakdown

Gender distribution for both the control and treatment groups was roughly

equivalent given the sample size. Table 7 gives a pictorial representation

of this breakdown. (It should be noted that these charts only refer to

instances that qualify fully for the treatment or control groups.)

As expected, the majority of the population for each group was male,

which is consistent with nationwide enrollment trends for computer

science programs. In fact, nearly twice as many participants identified

themselves as male versus female in both the control and the treatment

groups. Seven of twenty-four control instances were female, and fourteen

were male. Three persons chose to omit their gender in the demographic

data for the control group. Only one person chose to omit their gender in

the treatment group; five were female and nine were male. Therefore, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 98
Robert J Faux, ID 109462

population appears to be consistent with general trends and across both

the treatment and control groups.

Control Group Age Breakdown

Unknown
13%

Treatment Group Age Breakdown

Unkncwi

Table 8: Age Group Distribution

The breakdown between traditional aged and non-traditional aged

students in both groups was nearly identical. A traditional-aged student

was defined as being between the ages of 18 and 22, inclusive. Table 8

clearly illustrates that both groups consisted of a strong majority of

persons in this age range (70% for control and 73% for treatment). The

respondents who failed to provide gender identification also did not

identify their ages on the demographics data collection tool. The 23-29

year old age group included individuals who had returned to school full or

part time after several years work experience. Those over thirty tended to

be changing careers and were often returning to school on a part time

basis, so these groups were separated for possible partitioning. Three

persons reported an age of at least 23 years in the treatment group; four

persons did so in the control group. Three of the persons in the control

group reported ages over thirty. Although this sample was small, it did

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

99

show consistency between traditional and non-traditional aged students in

the two groups.

Control Group Racial Distribution

Native
American'

4%

Treatment Group Racial Distribution

Unknown

Native
American

Asian

Table 9: Racial Distribution

A sizable portion (25%) of the control group subjects chose not to reveal

their race in the demographic collection tool, so a comparison between the

control and treatment groups revealed minimal information on data

consistency. Table 9 clearly shows a Caucasian majority, which was

expected for the region and school from which the data was collected.

The largest minority population identified themselves as Asian in origin,

with five participants in the control group and two in the treatment group.

A single person identified him or herself as a Native American. The large

number of unidentified attributes made it impossible to generalize as to

whether the sample was representative of the population.

4.2.2 Academic Demographics
Academic demographics were collected to provide a picture of current

progress in the degree program and academic achievement. Subjects

were asked to report their current year in school, which reflected their

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 100
Robert J Faux, ID 109462

status at the point they were taking the programming (CS1) course. This

information was used to partition less experienced students from more

experienced students in data mining sessions. Participants were also

asked to identify their normal expected grades for high school and college,

as well as their awarded mark for the CSO course. This data reflected the

concern that prior success in academic environments was an external

variable that might skew results.

Year In School Distribution

Control

Treatment

Fr So Jr Sr Unk

Year

Table 10: Year in School

The distribution for participants and their current year of matriculation

contained a surprisingly large number of upper class students. As shown

in Table 10, the ratio of upper class to under class participants is nearly

one to one. Neither section had a sizable enrollment of freshman, even

when outlier instances were included. This distribution implied that

younger students who expect to complete computing degree programs

commonly took the CSO course in the spring, which would typically be

their second year of matriculation. The large number of sophomore

students in the control group supported this conclusion, since this group

would have participated in a fall offering of the CS1 course.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 101
Robert J Faux, ID 109462

The large number of upper class participants raised the concern that many

of the participants were not interested in continuing study in the field. This

concern is addressed later in section 4.2.4. However, nearly all students

identified themselves as majors or minors in computer science; therefore,

many students in this program apparently expected to attend college for

more than the normal four-year period. Also, it was considered likely that

many participants had taken advantage of the college credit opportunities

that are offered to advanced high school students at many colleges, which

would account for a larger number of younger students who had greater

college experience.

A B C Unknown/NA
CSO 7 6 8 3
High School 16 6 1 1
College 8 12 3______ 1

Table 11: Control Group Grade History

The grade history of the control group can be found in Table 11 and can

be compared with the results for the treatment group in Table 12.

A B C Unknown/NA
CSO 7 6 1 1
High School 12 3 0 0
College 11 4 0 0

Table 12: Treatment Group Grade History

The data provided for grade history suggested that the group of individuals

who completed the CS1 course in the treatment group had a greater

history of academic success. High school marks were similar between the

two groups, but the distribution changed in the college marks. However,

the most marked difference occurred in the number of C grades received
by participants in the CSO course. Eight members of the control group

reported a C, whereas only one in the treatment group reported a similar

grade. This data indicated that there might be a population difference

across the sample groups, which is discussed further in the analysis

portion of this document.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

102

4.2.3 External Learning Factors

External learning factors included characteristics reported by the student

in the demographics data collection tool that may have directly, or

indirectly, impacted success in school. This data is reported in Table 13

shown below:

Part Time Job Full Time Job Parent Commuter Disability
Control 17 3 5 6 0
Treatment____________ 12_________________0___________ 2__________1____________ 3____

Table 13: Reported External Learning Factors

A sizable number of participants in both groups worked part or full time off

campus in addition to their efforts as students. This trend was consistent

with the overall trend for college students at this school (BSU, 2000). The

control group included a significant minority (five) who were parenting, and

most of them also commuted to classes. Instances with these

combinations were partitioned for further analysis in data mining. The

treatment group included three individuals who identified physical or

learning disabilities; these records were also partitioned to determine if

these factors were significant in determining success or failure in the

class.

4.2.4 Study Plan Demographics

Maior Minor Undecided
No Intent to

Continue
Fall Pre 30 1 0 1
Fall Post 19 3 1 1
Spring Pre 20 3 0 4
Spring Post 17 3 0 1

Table 14: Study Plan Intentions

The high number of participants in their third and fourth college years was

contrary to expectations for entry-level courses. However, each

participant was asked to rate their intention to pursue studies in the

available computing majors at BSU. Ratings of four and five indicated

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 103
Robert J Faux, ID 109462

strong intentions to continue their studies in the field; ratings of one or two

indicated that the individual was unlikely to continue with studies in

computing, and a three indicated indecision. As shown in Table 14, nearly

all participants identified themselves as a major or minor in computer

science, with a strong intention to continue those studies. This trend did

not change significantly between the beginning and end of the course,

although some persons had decided to alter their plans and acquire a

minor instead of a major in the fall term. Of the four persons who showed

no interest in continuing studies in computing for the spring term, three

were identified as outliers who had not taken a CSO course. In fact, those

three persons also failed to complete the CS1 course. Therefore, it was

determined that the population is reasonably representative of the typical

BSU computer science student.

4.2.5 Outlier Instances
Fall 1 completed and no CSO
Fall 2 did not complete and CSO
Spring 1 completed and non treat CSO
Spring 2 completed and no CSO
Spring 3 did not complete and no CSO
Spring 4 did not complete and non treat CSO
Spring 5 did not complete and treat CSO

Table 15: Outlier Group Definitions

Outlier instances fell into one of seven subgroups, listed above in Table

15. Three of these groups consisted of persons who successfully

completed the CS1 course, but were not participants in the expected CSO

course. The Fall 1, Spring 1, and Spring 2 groups consisted of instances

where the participant successfully completed the CS1 course, while the

other groupings included persons who failed to complete CS1. Data in

this section were broken down by completion or non-completion; however,

a breakdown by CSO coverage may also be worthwhile in future analysis

and study. Data were partitioned by those who did not take a CSO course

(Fall 1, Spring 2, and Spring 3), those who took an anticipated CSO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 104
Robert J Faux, ID 109462

section (Fall 2 and Spring 5), and those who took an unexpected CSO

section (Spring 1 and Spring 4).

Outlier
Group Male Female 18-22 23-29 over 30 Caucasian Asian

Native
American Fr So Jr Sr

Fall 1 1 0 0 1 0 1 0 0 1 0 0 0
Spring 1 3 0 3 0 0 2 1 0 0 0 1 2
Spring 2 1 0 0 1 0 1 0 0 0 0 0 1

Table 16: Outliers That Completed Demographics

Individuals who completed the CS1 course yet failed to meet the criteria of

being in a participating CSO course were not common. In fact, of the six

persons who attended CS1 with no prior CSO course, only two completed

it (Fall 1 and Spring 2 in Table 16). Of the four who failed to complete the

course (Spring 3 in Table 17), three identified themselves as not being

interested in continuing studies in computer science, which made the data

for Fall 1, Spring 2, and Spring 3 groups uninteresting for the purposes of

this research. Persons who attended a non-treatment CSO, but attended

the CS1 course with the treatment group (Spring 1 and Spring 4) included

three who completed the course and one who did not. All members of

these groups had junior or senior status in the four-year program. These

records were not tested for similarity with instances in the control group,

even though they attended a similar CSO course.

The most interesting groups in the outlier class were the Fall 2 and Spring

5 groups. Members of these groups fit the criteria for inclusion in the

control or sample based on their attendance of the CSO course. However,

the individuals in these groups failed to complete the programming class,

so no data existed for the posttest or exit survey. Even so, it was

interesting to note that eight persons failed to complete in the fall group,

while only three failed to complete in the spring. Although this information

was not sufficient to reach substantial conclusions, it did illustrate varying

levels of success by participants in each group.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

105

Outlier
Group Male Female 18-22 23-29 over 30 Caucasian Asian

Native
American Fr So Jr Sr

Fall 2 6 2 4 3 1 5 1 1 0 1 4 3
Spring 3 3 1 2 0 1 4 0 0 2 1 0 1
Spring 4 1 0 1 0 0 0 1 0 0 0 1 0
Spring 5 3 0 2 1 0 3 0 0 0 1 2 0
Totals 13 3 9 4 2 12 2 1 2 3 7 4

Table 17: Outliers Failing to Complete

In general, the only demographic difference between the outlier groups

and the control and treatment groups was the tendency for outliers to be

students in their third or fourth year in the bachelor’s program. Only six of

twenty instances were classified as freshmen or sophomores, which

differed from the nearly even break between upper and lower class

participants in the control and treatment groups. Otherwise, the outlier

group was primarily male, traditional college-aged, and Caucasian. The

percentage of female outliers was lower than the instances of female

participants who qualified as control or treatment group members (13% vs.

29% and 33%) and the number of non-traditional aged students was

somewhat higher (40% vs. 17% and 20%). However, this may reflect

individuals who failed to report these characteristics. In general, the

outlier data were sufficiently similar to the non-outlier data to suggest that

there was no bias against any particular demographic group in these

courses.

Part Time Full Time
Job Job Parent Commuter Disability

Spring 1 1
Fall 2 7 1 1
Spring 4
Spring 5 2 1

Table 18: Outlier Reported Factors

Additional demographic factors reported in the outlier groups followed a

similar pattern to those exhibited by members of the control and treatment

groups. Table 18 shows reported factors for all outlier groups other than

Spring 2, Fall 1, and Spring 3. The vast majority of participants reported

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 106
Robert J Faux, ID 109462

(whether they were in the outlier groups or not) that they were employed

at least part time. A small number reported that they were parents, and a

smaller number reported physical disabilities (most commonly eyesight) or

learning disabilities (two instances of dyslexia). None of this information

indicated that a distinct pattern for completion or non-completion existed

for these data points.

High School
A B

College
C A B

CSO
C A B C D NA

Fail 1 1 1 1

Spring 1 2 1 3 3
Spring 2 1 1 1

Table 19: Grade History, Outliers Completing

The grade histories for outlier instances exhibited a few interesting

differences from the control and treatment groups. High school grade

history remained consistently high, as did most reported grade histories

for college. An extremely small number of all participants reported an

average C grade in the college experience, with three in the control group

and one in the Spring 3 outlier group; therefore, it can be concluded that

the vast majority of participants were accustomed to success in

academics. Table 19 illustrates the grade history for outlier members who

completed the CS1 course. The Spring 1 group consisted of persons who

were taking CS1, but who had taken CSO during a semester prior to the

treatment term. All three persons reported a C grade, possibly explaining

a delay in continuing studies as these individuals reassessed their desire

to continue.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

107

High School
A B C

College
A B C

CSO
A B C D NA

Fall 2 7 1 3 5 1 2 2 3
Spring 3 3 1 2 1 1 4
Spring 4 1 1
Spring 5 1 1 1 1 2 2
totals 11 4 1 6 9 1 1 2 4 3 4

Table 20: Grade History, Outliers not Completing

On the other hand, those who failed to complete the CS1 course reported

a generally less successful experience, based on CSO grades. In

particular, those who failed to complete the CS1 course and qualified as

potential members of the control group (Fall 2) reported the only D grades

(3; see Table 20) for CSO. The Spring 5 group included students who

completed the treatment CSO course. This group included three

instances, of which two reported C grades in the CSO course. This

accounted for one third of all of the C grades assigned to this group, which

was significant given the fact that Spring 5 only included three of the

possible twenty-nine respondents during that term.

These data, and similar data differences in grade history between the

control and treatment groups, was considered in analysis. Students who

achieve successful marks in a prerequisite may be more likely to complete

the next course in the sequence (Stein, 2002). However, it cannot be said

that .completion of the course ws accompanied by the reception of

successful marks. Data were not collected for final grades in the CS1

course.

4.3 Pretest and Posttest Data
4.3.1 Coding/Marking Process

The researcher marked pretest and posttest questions, in order to offset

any preconceived notions an instructor might have based on the historical

success or failure of a particular student. In order to avoid researcher

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 108
Robert J Faux, ID 109462

bias, tests from both the fall and spring terms were mixed together and the

term origin was blocked from view. All pretests were marked on the same

day, as were all posttests. Once marked, the documents were regrouped

by term and data were recorded.

There were four pretest questions, and three data points were recorded

for each question. Pretest questions were evaluated for correctness and

given a whole number score from one to five, with five representing a

completely correct answer and one representing any attempt to solve the

problem that resulted in very poor results. If no attempt was made to

solve the problem no score was recorded. Thus, pretest results may show

lower count numbers than actual participants for some question scores. In

determining test totals, these blank instances were treated as zeros, but

calculated averages for individual tests left these instances out of the

sample. Each pretest question was also rated on a score from one to five

for clarity. A very clearly presented solution would receive a high score

(four or five), even if the answer were entirely incorrect (one or two).

Similarly, a correct answer received low clarity scores if it was difficult to

determine if the answer was correct and how the answer was determined.

Finally, each pretest question was categorized based on the method

chosen by the participant to present his or her answer.

There were also four posttest questions for which two data points were

recorded for each question. All questions required answers written in the

C++ programming language (the language used in the BSU CS1 course),

with additional information being optional but encouraged. Each question

was rated for accuracy with a value from one to five, with five being the

highest. No fractional values were assigned and questions with no effort

were assigned a zero score. The zero score was used both for the

posttest total score calculation and for single question averages. If the

participant showed evidence of supplementary processes to help with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 109
Robert J Faux, ID 109462

coding, this was recorded as a second data point. Coding for this data

point was done in a similar fashion to the third data point in the pretest.

The type of representation of supplementary processes was identified and

given a coded value equivalent to similar work exhibited in the pretest.

4.3.2 Control Group
4.3.2.1 Pretest

Participants in the control group left very few questions entirely blank, so

some positive value was assigned for nearly every question. Of the four

questions, the third was the most difficult, as it asked for a strategy for

solving a large problem. As such, it was most frequently left blank (five

instances; see Table 21). Most correctness ratings showed a normal

distribution for the marks received by participants of the control group.

The only possible exception to this was a slightly flat distribution for

question four. Similarly, most clarity ratings showed a strong normal

distribution.

0 1 Q1 02 02 03 03 04 04
Correct Clarity Correct Clarity Correct Clarity Correct Clarity

Answers 24 24 23 23 19 19 21 21
Mean 3.46 3.38 3.35 3.22 1.63 2.37 2.19 1.62
Std Dev 0.93 0 .8 8 1.11 0.74 0 .6 8 0.90 1.21 1.24
Variance 0.87 0.77 1.24 0.54 0.47 0.80 1.46 1.55
Skew -0.40 -0.43 -0.34 -1.13 0.63 -0.34 0.35 0.99
Counts
5's 3 1 4 0 0 0 0 1
4's 8 12 5 8 0 1 4 0

3's 11 6 11 13 2 9 5 4
2's 1 5 1 1 8 5 3 4
1's 1 0 2 1 9 4 9 9

Table 21: Pretest - Control Group

As anticipated, the mean value for correctness of the first and second

questions tended to be significantly higher than those for the final two

questions. Question one exhibited the highest mean (3.46 out of 5), and

question three was the lowest (1.63 out of 5). Clarity in solution

description for the first two questions tended to be much higher as well,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 110
Robert J Faux, ID 109462

which reflected the accuracy of the solution, since a correct solution was

likely easier to explain. However, it also reflected familiarity with this type

of problem and the relative simplicity of the problem as compared to the

other two. Question four illustrated the widest variation in correctness and

clarity, largely due to the added necessity for the participant to translate

and determine the problem boundaries. Also of interest was the slight

dissimilarity between correctness and clarity on questions three and four.

In question three, it made sense that clarity would be higher as the

problem had inherently unclear boundaries and direction. Therefore,

participants could easily explain what they thought should be done in a

concise manner, but still miss large segments of a required solution. In

the case of the fourth question, it was common for respondents to provide

an answer that was either the product of a guess or calculations not

recorded on paper. This resulted in lower clarity scores, but did not

preclude a correct answer.

4.3.2.2 Posttest
The posttest differed from the pretest in that questions with no answer

were included in the separate question tallies. These scores and statistics

are shown below in Table 22. In this case, only the correctness of the

solution was analyzed and no value was assigned to clarity in writing

code. Trends again reflected anticipated results, with higher numbers in

the first question and steadily declining mean scores as the questions

became progressively harder. The distribution for the first question was

very flat, with the occurrences for each score from two to five being very

similar. The other questions showed curves that were closer to normal

distributions, so the overall result for total scores approximated a normal

distribution as well.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

111

Q1 Q2 IS IS

Answers 24 24 24 24
Mean 3.25 1.88 1.42 0.92
Std Dev 1.48 1.39 1.06 0.88
Variance 2.20 1.94 1.12 0.78
Skew -0.47 0.66 0.72 1.01
Counts
5's 6 1 0 0
4’s 6 3 1 0
3’s 4 3 3 2
2’s 5 5 5 2
rs 2 9 11 12
0‘s 1 3 4 8

Table 22: Posttest - Control Group

4.3.2.3 Qualitative Information
Qualitative information for both the pretest and the posttest were recorded

as a part of this study. By necessity, data for the pretest were collected

for every answer since the solution style was not dictated by the test. On

the other hand, most answers for the posttest did not include a qualitative

observation since only evidence of coding appeared on the majority of

submissions.

Q1 02 03 04
Pseudocode 13 7 2 0
Picture 0 0 0 3
Word 6 4 16 3
Math 0 4 0 1
scribbles 0 0 0 6
psu/word 3 4 1 0
pic/word 2 0 0 5
math/word 0 1 0 0
math/psu 0 3 0 0
pic/psu 0 0 0 0
None 0 0 0 3

Table 23: Pretest Observations - Control Group

For all pretest questions other than the third, subjects used a wide range

of techniques to convey their solutions. A simple majority used a

reasonably structured form of pseudocode to answer the first question

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 112
Robert J Faux, ID 109462

(thirteen; see Table 23). Three more individuals used words that

approximated pseudocode. The second question showed a broader

range of tendencies, with pseudocode again leading the way with seven

instances. As expected, the third problem solution was generally

presented in prose, while the final problem was most likely to exhibit

picture representations to help with the explanation.

Control Treatment
noncode solution 5 0
additional pseudocode 1 0
additional picture 1 7
additional words 2 3

Table 24: Posttest Observations - Control

The majority of responses for the posttest included solutions that

exclusively featured programming language code. Rather than report

these instances by question, all instances were summarized for both the

control and treatment groups in Table 24. The first row actually

represented a negative observation. In this case, the respondent was

unable to provide a programming code solution, so they attempted to

provide a word-based solution to the problem. Obviously, this does not

exhibit an ability to program, only to problem-solve. Tests with “noncode”

solutions were not omitted. Persons with this sort of answer exhibited in

some fashion on the test that they understood that answers were

expected to be in a programming language; however, they were following

instructions to show their process in attempting to find a coding solution. It

was significant to observe that five instances of a “noncode” solution

appeared in the control group.

All other observations reflected instances where additional materials

evident on the posttest were provided in addition to a code solution. Four

separate individuals provided additional materials to their coded solution,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 113
Robert J Faux, ID 109462

with variations of pseudocode, words, and pictures being used. No

participant used additional materials on more than one problem.

4.3.3 Treatment Group

4.3.3.1 Pretest
Testing scores and observations for the treatment group showed several

interesting differences from the control group. As with the pretest scores

for the control group, scores for the treatment group were lower for

question three (see Tables 21 and 25). However, scores for question four

were much higher in relation to the other marks. Correctness values for

questions one and two were slightly lower for the treatment group than

they were for the control group. On the other hand, the number of

questions left completely blank was limited to two instances for the

treatment group (once on question one and once on question four), which

contrasted with nine instances for the control group. The net result, if zero

scores were included in the average, would be closer between the two

groups for question two and for the clarity scores for question one.

However, since the sizable number of omissions for questions three in the

control group emphasized a huge gap that might have reflected time

constraints more than ability, zeros were omitted in the mean scores.

Q1 Q1 Q2 Q2 Q3 Q3 Q4 Q4
Correct Claritv Correct Claritv Correct Claritv Correct Claritv

Answers 14 14 15 15 15 15 14 14
Mean 2.93 3.64 2.93 2.93 1.73 2.13 2.57 2.57
Std Dev 1.33 0.63 1.03 0.96 0.96 0.83 1.60 1.65
Variance 1.76 0.40 1.07 0.92 0.92 0.70 2.57 2.73
Skew
Counts

-0.08 -1.69 -0.30 -0.41 1.17 0.58 -0.09 -0.15

5's 2 0 0 0 0 0 1 2
4's 2 10 6 5 1 1 5 2
3's 6 3 3 5 2 3 1 4
2's 1 1 5 4 4 8 2 2
1's 3 0 1 1 8 3 4 2

Table 25: Pretest - Treatment Group

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 114
Robert J Faux, ID 109462

As with the control group, the distributions for most question scores

exhibited normal distributions. However, correctness values for question

two exhibited a somewhat bimodal distribution, as did the correctness

values for question four. Question four values tended to show a flatter

curve of distribution, like the control group. Once again, the total of all

scores maintained a normal distribution; hence, the means and variances

for total score data provided useful information for later analysis. Total

score averages for correctness were calculated at 9.80 for the treatment

group and 9.68 for the control, which represented a small and likely

insignificant difference. On the other hand, clarity scores for the treatment

group averaged a total of 10.87, compared to 9.75 for the control group.

This difference was sizable enough to analyze for statistical significance.

4.3.3.2 Posttest

Q1 Q2 Q3 Q4
Answers 15 15 15 15
Mean 3.73 2.53 1.73 1.60
Std Dev 1.62 1.55 1 .2 2 1.30
Variance 2.64 2.41 1.50 1.69
Skew 1 o 00 CO 0.26 0.59 0 .2 0

Counts
5's 8 2 0 0

4's 1 3 2 1

3's 3 1 1 3
2's 0 5 5 4
1"s 3 3 5 3
0's 0 1 2 4

Table 26: Posttest - Treatment Group

Unlike the pretest, posttest scores of zero were recorded and added to the

mean, since time constraints were known to be consistent for the posttest.

As with the control group, scores were progressively lower for each

question on the posttest, which again reflected the relative difficulty of

each question. Distributions also showed similar characteristics to the

control group. In both groups, there were cases where a division between

students who ‘understood’ and those who did not were clearly visible. For

example, question one in the treatment group (Table 26) showed that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 115
Robert J Faux, ID 109462

most participants were able to achieve success, with the notable

exception of a small subset who tended to do poorly throughout the

posttest.

Although the pretest data showed possible differences in clarity results but

none in correctness, the posttest scores exhibited more differences

between the two groups. In fact, one might conclude that differences

between the two groups at the beginning of the CS1 course, based on

pretest correctness scores, were not significant. On the other hand,

pretest scores for each question were higher for the treatment group than

they were for the control group. Although each question score was not

statistically significant on its own, the aggregate score mean (9.60 for the

treatment group, compared to 7.46 for the control group) was of interest

for analysis.

4.3.3.3 Qualitative Information
Observations for styles of presentation for the treatment group (see Table

27) showed stronger tendencies for particular approaches than the control

group. The use of pseudocode made a much stronger appearance in the

first two questions, and a second pass through the pretests revealed that

the pseudocode structure was generally improved. The use of graphic

helpers also increased in quality and clarity for the final question. Many of

the control group produced illegible scribbles; however, the treatment

group produced pictures, diagrams, and notes (which could be referenced

multiple times as they attempted to solve the problem).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

116

Q1 Q2 Q3 Q4
pseudocode 11 7 0 0
picture 0 0 0 3
word 1 1 12 5
math 0 1 0 0
scribbles 0 0 0 0
psu/word 1 2 1 0
pic/word 0 0 2 3
math/word 0 1 0 1
math/psu 0 3 0 0
pic/psu 1 0 0 0
none 0 0 0 2

Table 27: Pretest Observations - Treatment Group

4.3.4 Outlier Groups
Most outlier groups consisted of one or two instances, which was

insufficient to draw conclusions about the population they represented.

These records may be viewed in Appendix XIV. However, it was

instructive to view subsets of instances for those students who failed to

complete the CS1 course, to determine if this information illustrated a

pattern in pretest scores that was predictive of an individual’s failure to

complete the programming course.

4.3.4.1 Pretest
Between the two courses, there were sixty-two enrollees; two instances

were removed due to missing informed consent forms and pretest data.

Of the remaining sixty persons, forty-four completed the programming

(CS1) course. Those who successfully completed the course averaged a

correctness score of 10.09 and a clarity score of 10.50. On the other

hand, those who failed to complete averaged 8.06 and 9.31, respectively.

Individual question scores tended to be lower for each question with the

exception of question three (the large domain problem), which was very

nearly an exact match. The most dramatic differences were found in

question four, which was the brainteaser problem. Those who completed

had a 2.43 average, and those who did not had a 1.40 average for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 117
Robert J Faux, ID 109462

correctness. When compared within specific classes, the correctness

numbers for the fall were 2.27 for those who completed and 1.14 for those

who did not. Similarly, correctness numbers for the spring were 2.61 and

1.62. Question one and question two scores for the fall semester group

were fairly close, regardless of completion status. Question two scores

were actually slightly higher for those who did not complete in the fall.

Numbers in the spring show that those who failed to complete had slightly

lower scores in questions one and two, with no real difference in question

three. Therefore, problems such as the one found in question four may

have some predictive capability for future success in a programming

course.

4.3.4.2 Posttest
Five instances existed for students who completed the CS1 course but did

not qualify for either the control or treatment group. However, these

outlier records fell into three different outlier groups, so little value was

expected to result from working with this data. Complete data recordings

can be found in Appendix XIV.

4.3.4.3 Qualitative Information
Students who failed to complete the CS1 course tended to use illegible

scribbles or no description at all in support of their efforts to solve the

fourth question. Well-structured pseudocode was slightly less common,

although still used strongly by the three students who took the treatment

CSO course but did not complete the CS1 course (Spring 5 group).

Otherwise, there were no verifiable trends that revealed a difference

between those who completed and those who did not complete the

programming course.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

118

4.4 Self-Evaluation Data
All self-evaluation data consisted of rankings of comfort based on whole

values from one to five, with five being the highest level of comfort in one’s

ability to perform. The programming rating was an exception in that it

included a value of zero for those persons who had no programming

experience prior to the CS1 course. The addition of the zero rating

provided a more accurate picture of prior experience, both in the averages

and in the pure numbers. Otherwise, the growth of persons starting with

no programming experience would have been lost in the data.

4.4.1 Control Group
The pretest data consisted of entries from twenty-two of the twenty-four

control group members. The two exceptions included persons who chose

not to answer the entire set of self-evaluation questions. They did,

however, answer the questions at the end of the course in the exit survey.

Their data was included in the aggregate post values, but their records

were not included in paired analysis.

Problem
Comoutina Math solve Proarammina

Pre Post Pre Post Pre Post Pre Post
Answers 22 24 22 24 22 24 22 24
Mean 4.00 4.25 3.91 4.04 3.93 3.96 2.55 3.71
Std Dev 0.62 0.94 0.75 0.75 0.73 0.69 1.84 0.95
Variance 0.38 0.89 0.56 0.56 0.53 0.48 3.40 0.91
Skew 0.00 -0.89 0.15 -0.07 0.16 0.05 -0.35 -0.99
Counts
5's 4 13 5 7 5 5 3 4
4's 14 5 10 11 10 13 5 12
3's 4 5 7 6 6 6 6 6
2's 0 1 0 0 0 0 1 1
1's 0 0 0 0 0 0 1 1
0's 0 0 0 0 0 0 6 0

Table 28: Self-Evaluation - Control

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 119
Robert J Faux, ID 109462

Computing

The computing score was intended to measure general comfort in working

with computers. It was expected that these ratings would be above

average, and both the pre and post means (see Table 28) supported this

expectation. Although the change in the mean was not necessarily

significant, it was important to note that a sizable number of participants

migrated from rating themselves with a four (very comfortable) to a five

(extremely comfortable). One of the two missing subjects rated him or

herself with a ‘three’ for this data point, while the other chose a ‘five’. This

growth in confidence was viewed as a reflection of students’ confidence in

their ability to continue in computer science.

Math

The math score was expected to be average or above, and marks for the

control group met this expectation. There was a very slight increase in the

mean over the term, but this might have reflected the addition of the two

entries that failed to submit initial data. Also, it was not possible to

ascertain what outside influence may have altered participant self-ratings

when there was, in fact, a change. However, it was encouraging to note

that these numbers did not change significantly, which indicated that this

group had some internal consistency in rating their comfort levels.

Problem-solving

As with math, problem-solving comfort levels did not change markedly for

the participants, which also indicated that intra-rater reliability is high for

this particular group of participants. Thus, the confidence level for

changes in ratings for the programming characteristic was higher. Scores

were similar to those exhibited in the math question and were generally

above average.

Programming

Scores for programming showed a significant change, which was

expected since six participants indicated that they had no programming

experience prior to the CS1 course. In general, those who had

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 120
Robert J Faux, ID 109462

programmed before reported average or better comfort with writing

program code. This trend continued with the posttest; those who had not

coded before joined those with prior experience, reporting average or

better rankings of self-confidence.

4.4.2 Treatment Group

Comoutina
Pre Post

Math
Pre Post

Problem-
solve
Pre Post

Proarammina
Pre Post

Answers 15 15 15 15 15 15 15 15
Mean 4.13 4.53 4.00 4.07 3.47 3.93 1.80 3.67
Std Dev 1.06 0.74 0.65 0.80 1.06 0.80 2.18 1.11
Variance 1.12 0.55 0.43 0.64 1.12 0.64 4.74 1.24
Skew
Counts

-1.96 -1.33 0.00 -0.13 -1.15 -0.84 0.49 -1.02

5’s 6 10 3 5 1 3 2 3
4's 7 3 9 6 9 9 4 7
3's 1 2 3 4 2 2 0 3
2's 0 0 0 0 2 1 0 1
1’s 1 0 0 0 1 0 1 1
0's 0 0 0 0 0 0 8 0

Table 29: Self-Evaluation - Treatment

Computing

Computing scores were similar to those exhibited by the control group,

with a single outlier ranking him or herself as being very uncomfortable

with computing. This same individual indicated a low comfort level for

problem-solving and no programming experience. Otherwise, participants

tended to shift upward in the posttest, just as they had in the control

group. Means were slightly higher for both the pre and post values for the

treatment group.

Math

Math scores were nearly identical between the treatment and control

groups. Similarly, the scores were nearly identical between the beginning

and the end of the CS1 course. This indicated that intra-rater reliability for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 121
Robert J Faux, ID 109462

confidence self-rating was sufficiently high to consider the programming

rankings to be reasonably accurate.

Problem-solving

A mild anomaly in the problem-solving data can be seen in Table 29.

Three individuals ranked themselves with below average comfort in

problem-solving, which resulted in a difference in the mean between the

control and treatment groups of 3.47 (treatment) to 3.93 (control). The exit

survey scores were extremely close (3.96 control and 3.93 treatment).

The starting values were not statistically significant, but the difference in

values could be attributed to any number of factors. One possible

explanation was that these participants rated themselves harshly as they

remembered some of the activities and exercises provided by the new

curriculum in the CSO course. If this were the case, the change from pre

to post was an indication that they had overcome their discomfort.

Programming

Over half of the participants reported no prior experience with

programming (eight persons) as opposed to one quarter (six of twenty-

four) of the control group; therefore, members of the treatment group had

far less experience to which they could refer during the CS1 course. With

zero values included in the calculation, the treatment group had 1.80

mean, compared to a 2.55 mean for the control group. However, without

zero values, those with prior programming experience had a mean of 3.86

(seven persons) for the treatment group, compared to 3.50 for the control

group (sixteen persons). Values reported at the end of the CS1 course

were quite similar for both groups, despite the larger number of

inexperienced members in the treatment group (3.71 to 3.67). However,

upon the removal of persons with prior programming experience,

members of the control group averaged a comfort score of 3.0, while a

similar subset in the treatment group averaged 3.25. Starting values for

these persons were zero, so these numbers also represented their growth

in comfort. Growth exhibited by the treatment group was greater (+2.88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 122
Robert J Faux, ID 109462

control versus +3.22 treatment) when those who identified themselves as

having low vales at the beginning of the CS1 course were included..

There were single instances of persons reporting a reduced comfort level

with programming in each group; in these instances, the reduction was

from four to three or five to four. In general, those rating themselves with

a three or higher at the beginning of CS1 tended to report little or no

change in their comfort level. The treatment group averaged a final rating

of 4.17 and the control a rating of 4.00, as opposed to starting marks for

these persons that averaged 4.34 and 3.79 respectively. Therefore, the

most interesting data was found in relation to those who identified no prior

experience or those who reported discomfort with programming at the

beginning of the class.

4.4.3 Outlier Instances
4.4.3.1 Outliers Failing to Complete CS1

The chart below summarizes the differences in self-ratings exhibited by

individuals who completed or who failed to complete the programming

course. Most values were tightly clustered. Self-ratings for comfort with

math were consistently lower for those who failed to complete the course,

although the differences (-0.53 control and -0.77 treatment) were not

overly dramatic given the variation exhibited within the data. Interestingly,

the control group reported more experience in programming than the

treatment group, and no difference between those who succeeded or

failed could be detected. The control group exhibited a difference in

problem-solving; the treatment group did not.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

123

4.5

3.5

—♦— control complete

—• —control non-complete

treat complete

 X treat non-complete

math prob solvecomputer program

Figure 1: Completed vs Non-Completed Ratings

These comparisons provided an opportunity to isolate an external variable

that might predict success in programming courses. Further study could

isolate both mathematics skills and problem-solving skills more

specifically, which would confirm work already completed by Quade

(2003) and Stein (2002). However, this data did not isolate persons who

took the treatment CS0 course. There were only three instances of

persons failing to complete the course who had taken the CS0 treatment

class, so the mean for such a small sample was not sufficient to discuss

extensively. However, it was noted that these respondents did tend to

rate themselves lower in math and problem-solving skills.

4.4.3.2 Outliers Completing CS1
Of those students who completed CS1 but did not qualify for the control or

treatment group, all reported prior programming experience (although one

reported very low comfort). There were only five instances that fell into

this classification; thus, the mean score for programming was generally

much higher than other subgroups. However, their marks were generally

consistent with other individuals who completed the programming course.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

124

4.5 CSO Satisfaction Data

Participants were asked whether they felt the CSO course was useful for

their success in the subsequent CS1 course. This measure of satisfaction

provided an indicator for student perceptions of the course’s value. Higher

satisfaction levels indicated that students were more convinced that they

were learning useful things, so they were also more likely to be successful

learning that which they needed to know.

Control Pre Control Post Treat Pre Treat Post
count 22 20 15 15
mean 3.32 2.95 4.40 4.00
stdev 0.99 1.28 0.63 1.20
var 0.99 1.63 0.40 1.43
skew -0.08 -0.24 -0.55 -1.45

Table 30: Satisfaction Data

The ratings for the CSO course showed a sizable difference between the

control and treatment groups, especially given the five-point Lickert scale

used in this measurement. Scores remained a full point higher for those

who attended the treatment course at both the beginning and the end of

the CS1 course. Both groups exhibited some decline in satisfaction, but

the chart below shows a similar slope for each. This decline can be

attributed to the additional information known by the subjects at the

conclusion of the CS1 course, which provided them with a better

framework from which they could critique the CSO course. At the

beginning of the course, it was unlikely that the student was fully aware of

how material in the prior course would relate to the new course. The

evaluation at the end of the programming course provided a more

informed analysis. This data appeared to be statistically significant and

was analyzed further (see Chapter 5).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

125

 ♦ control

 W"1-" treatment

Figure 2: Change in Satisfaction Data

4.6 Qualitative Data
Qualitative data was collected in the demographics data collection tool

and the exit survey in order to provide participants with an open forum for

disclosing their thoughts on the CSO course. In general, students kept

their commentary very brief, if they gave it at all. However, indications

were that the majority of participants considered their answers seriously

and that they were hopeful that the information collected might be used to

encourage improvement in the curriculum for the computer science

program.

4.6.1 Best and Worst Parts of CSO
For both the control group and the treatment group, a majority of students

identified some combination of problem-solving, algorithms, and thinking

for programming as one of the most useful parts of the CSO course. For

the demographics data collection tool, which provided a view of opinions

held at the beginning of the CS1 course, eight of fifteen in the treatment

group and twelve of twenty-four in the control group identified problem

solving and algorithms as the most useful part of CSO. The ending view

was provided by the exit survey. Results there showed dramatic

increases, with all fifteen members of the treatment group citing these as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 126
Robert J Faux, ID 109462

being most useful and seventeen of twenty-four of the control group doing

the same.

Most Useful Comments from the Control Group:

“90% of the material was good.”

“study of algorithms most useful”

“how to write an algorithm”

“The most useful was the developing of algorithms. The in depth

detail the instructor went into.”

“Helps me in using critical thinking to solve a problem”

“Most useful was the learning to analyze problems in order to solve

them.”

Most Useful Comments from Treatment Group:

“...the instructor, his teaching style and testing style.”

“I liked all parts so I guess every bit of it was useful.”

“Algorithm development part and machine language was really

helpful and I enjoyed it.”

“Practice with problem-solving. An overall view of how

programming, problem-solving and computers are linked.”

“(CSO) put me in the mindset I needed to problem-solve in (CS1)...”

“The ways to approach a problem and working with algorithms.”

On the other hand, subjects had diverse views concerning what the least

useful portions of the CSO course were. Some of these comments

included qualifiers that the student could understand why the subject

material was included, indicating acknowledgement that not everything

had to have apparent immediate application to have potential value.

However, some areas were mentioned with some frequency. A few

students in each group cited historical and social aspects of computing as

having little use or value. Others cited exposure to assembly language

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 127
Robert J Faux, ID 109462

concepts, circuits, and binary numbers as negatives. Perhaps the most

interesting commentary cited the very brief views of various programming

languages provided in the existing CSO course as being unproductive,

with nearly a dozen separate instances of comments relating to this

practice. In comparison, only six positive comments on this subject were

found; all occurred in the demographic tool, with none occurring in the exit

survey.

Least Useful Comments - Control Group

“least useful - The little bit of C++ that we used was vague and I

felt uninformed.”

“The book did a poor job of explaining concepts”

“too much work”

“least useful was the design of circuits and the long boring

lectures.”

“bit description and representation of values.”

“Learning fragments of programming languages. I remember asking

(a question) and his answer made no sense.”

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

128

Least Useful Comments - Treatment Group

“history of computer (but need)”

“The Big-0 notation part looked to me really frustrating.”

“learning about group work was not really put into practice.”

“dealing with assembly language, it was brief enough not to kill me,

but annoying.”

4.6.2 Suggested Improvements
Very few comments were submitted regarding improvements; comments

were often directed to both courses of study rather than being specific to

CSO or CS1. Those recorded that had a direct relationship to the CSO

course follow.

Control Group:

“Going over ideas in class is important, but lab time is essential in

the quest to full understanding.”

“Use real life scenarios. Don’t use big words and work through

problems using a structured walkthrough (step by step).”

“More problem-solving exercises..."

“Should teach more problem-solving techniques.”

“I really don’t feel that (CSO) helped tremendously with (CS1).

Students should get started with actual programming ASAP. Pencil

and paper algorithms just aren’t the same.”

Treatment Group:

“(No change to CSO) we covered a lot of information...the problem

sets and tests were challenging, but that was a good thing.”

“Writing a paper about ethical issues - 2 class periods of class

discussion would have been more thought provoking.”

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

129

4.6.3 Other Qualitative Data
The demographics data collection tool included a question asking subjects

what they were most looking forward to and most worried about for the

upcoming CS1 course. As expected, there were numerous comments

about learning a programming language being what they were most

looking forward to, and sometimes the thing they were most worried

about. Students were primarily worried about grades and the amount of

time and effort required for the course. Thus, no underlying themes were

discovered that impacted the results of this study.

Control Group - most looking forward to:

“Program with quality instead of just programming”

“An excellent knowledge of C++”

“Programming with C++. This is what I’ve been looking forward to

since last year.”

“Learning a programming language, gaining tools for understanding

real-life tools in the ‘computer world’.”

Treatment Group - most looking forward:

“programming - I love to program.”

“I would like to learn as much as possible about C++. To be able to

make programs.”

Control Group - most worried about:

“Grades and work demand. I am afraid of being short on time for

completing the lab with understanding." (emphasis included)

“worried about not being able to program correctly. That my code

won’t work and I can’t figure out the solution.”

“Not being able to understand what we are working on. Hopefully

that won’t happen.”

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

130

“May not be able to remember all the functions and syntax in C++”

Treatment Group - most worried about:

“Not being able to catch up with the rest of the class and not

understanding the essence of given problems.”

“I’ve heard that this class is really tough and that the programs are

really hard and time consuming. I’m worried that I’m not going to

understand everything.”

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

131

5 Interpretations and Analysis

5.1 Sample Representation of Population

The sample selected for this study followed a cohort design, where

persons within the target population were placed into their groups based

on time period of attendance. Persons who entered the BSU computing

course sequence for the control group were tracked during the Fall 2000

term in their CS1 course. A second cohort comprised the treatment

group, which was measured during the Spring 2001 term in their CS1

section. In effect, this time-based selection effectively included all persons

at BSU that fit the target population (persons entering computing studies

at the introductory level) during the 2000/2001 academic year. There

were no instances reported of individuals refusing to participate in this

study.

However, simple inclusion of all members available that meet certain

criteria at a given time did not mean that the sample was representative of

the total population. It was important to determine whether the sample

reflected the norm for the BSU overall computer science student

population and the general student population during the academic year in

question. According to public records provided by BSU’s online data

book, there were a total of 142 declared Computer Science (CS) and

Computer and Information Sciences (CIS) majors during the target

academic year (Bemidji State University, 2003). This same source

reported an additional twelve CS minors. A simple projection indicated

that approximately 40 persons enter the course of study per year and

declare the major. Between the Fall 2000 and Spring 2001 terms, forty-

four persons completed the CS1 course; thirty-nine were members of the

control or treatment groups for this study. This indicated that this year

was not atypical for enrollment in computing studies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 132
Robert J Faux, ID 109462

The institutional data book also reported that approximately nineteen to

twenty-three CS and CIS majors are awarded Bachelor’s degrees each

year (not including minors). This seemed contrary to the projected forty

students per class. However, it was necessary to also consider the

reported six-year graduation rate, which was 47% for the years 1995-

2001. Forty-seven percent (47%) of the forty-four students would produce

twenty-one graduates from this group of students. Therefore, the sample

was representative of a typical cohort for computing studies at BSU, given

available data.

Student demographics at BSU are driven, to a large extent, by the

demographics of the state of Minnesota, since 91% of all enrolled students

are from in-state locations. Unfortunately, the race and ethnicity

breakdown provided by the school included a large population of

‘unknown’ origin (33.25%), thus it was difficult to be certain about

comparisons between general population and the sample population.

However, the largest minority population was Native American (3.5% of

the total population) followed by Asian descent, African descent and

Hispanics (0.5% of the population each). In addition, there were

international students that increased the Asian percentage, in part due to

Malaysian and Japanese students, who accounted for 1 % of the student

population. Since the vast majority of enrolled students were from

Minnesota, it was possible to extrapolate from census data provided by

the Minnesota Department of Administration (2003). This resource

reported that 90% of Minnesotans are ‘white’ or ‘Caucasian’ in race, thus it

was reasonable to assume at least 82% (90% of 91% from Minnesota) of

the students at BSU were Caucasian. In this study, 77% of those who

reported their ethnicity were Caucasian, 19% reported Asian descent, and

3.8% reported that they were Native American. These numbers seemed

reasonable, although the Asian population was inordinately high given the

general BSU demographics. However, the Taulbee survey indicated that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 133
Robert J Faux, ID 109462

21.7% of Bachelor’s degrees in computer science awarded in the United

States were given to students of Asian or Pacific Islander descent in

2001/2002 (Vardi, Finin & Henderson, 2003); those classified as ‘white’ or

‘Caucasian’ were awarded 57.8% of these degrees. This illustrated a

tendency for the Asian population to be larger in computing studies, so

this seeming disparity was normal for the field.

The Taulbee survey reported that the number of women receiving

bachelor’s degrees in computer science as being 18.8% of all awarded

degrees, regardless of race or ethnicity (Vardi, et al., 2003). No general

data about gender was found in the BSU data book, but it was considered

likely that campus-wide data would not show any consistency with the

population in computer science. The sample included fifteen women.

Twelve completed the CS1 course, representing 26.7% of the enrollees

for both sections of the CS1 class. This was higher than nation-wide

statistics, but it was consistent with national trends, which show much

higher numbers of men than women in the computing disciplines.

Data with respect to age, disability and other factors were either not

available for BSU, or were presented in ways that precluded a reasonable

comparison. However, the large number of persons reporting ages

between eighteen and twenty-two (forty of all persons in the sample)

supported the contention that most persons in the program were within the

traditional age span for a four-year program. Also, the inclusion of six-

year graduation success rates indicated that it was not uncommon for

BSU students to take more than four years to graduate, which helped to

explain the higher number of sophomore and junior students in these

classes. Four percent of the BSU population had recorded disabilities,

whereas 3.8% of the sample reported a disability, which was also a

reasonable match. However, since data collected in this study did not ask

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 134
Robert J Faux, ID 109462

if the disability was on record with the university, the comparison was not

entirely valid.

The sample selected appeared to be a representative sample for the

population of computing students at Bemidji State University. In cases

where participant characteristics seemed divergent from the general BSU

population, the difference was easily explained by national tendencies for

computing degree programs. For example, the number of Asian

participants and the number of males in computer science programs are

typically higher. Similarly, differences in the sample from national

tendencies were explained by the local demographics exhibited at BSU.

For example, the national numbers indicate that only 0.4% of degree

recipients are Native American, yet this population is a larger portion of

the overall BSU enrollment than most campuses. Also, the number of

minorities on campus was much lower at BSU than most metropolitan

area schools. In summary, the sample was appropriate for the

combination of school, location and discipline; therefore it was a

representative sample.

5.2 Analysis of Programming Skill Learning

The posttest scores measured the ability of subjects to perform program

coding tasks. The pretest provided a baseline ability marking in problem

solving skills in order to account for variance in ability between individuals.

This pretest was given a correctness score and a clarity score. Thus, a

question could receive high marks for a correct answer, yet low marks for

poor presentation. On the other hand, an individual could receive high

marks for presentation despite a poor answer. The posttest was marked

solely on program code correctness.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 135
Robert J Faux, ID 109462

The strategy for analyzing the data was to first determine if there was a

difference for pretest correctness, pretest style and posttest marks

between the control and treatment groups in order to determine whether

there were any significant scoring differences between groups. Pretest

correctness scores were then subtracted from posttest scores in order to

determine a relative measure of change for each participant. These tests

were not an exact measure of the same skill, so it was not important

whether the scores were statistically different, nor did it matter whether

they were higher or lower than previous scores. The difference

represented the relative value based on the potential shown by the subject

in the pretest as compared to the achievement exhibited in the posttest.

Thus, analysis was performed across groups to ascertain the difference

between potential achievement and actual achievement.

C t

20

15

h-
<0tu
\z 10 <*>
o
CL

5

0
2 4 6 8 10 12 14 16

PRETEST_CORR

20

15

</)
Ui
t 10
(/)
o
CL

5

0
2 4 6 8 10 12 14 16

PRETEST.CORR

Figure 4: Pretest Correctness versus Posttest Scores

The first indication that there was something interesting happening with

the test data can be seen in the graphs shown above with their best-fit

lines. These charts show a 0.50 confidence interval on the regression

line. The confidence interval supported the idea that the regression line

was a good fit for the data collected, although it is possible that the control

group could vary to a line with little or no slope. The control group is

shown on the left and the treatment group on the right. This scatter plot

shows the distribution of pretest correctness score versus the posttest

score received by each subject. It was natural to expect that participants

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 136
Robert J Faux, ID 109462

who scored higher on the pretest would also score higher on the posttest.

The data for the treatment group matched this expectation, but the data

for the control group did not. Surprisingly, the control group participants

tended to score lower on the programming posttest if they scored higher

on the pretest.

C t

K<S)
HItto
Oa.

PRETEST.STY

toUi

PRETEST_STY

Figure 5: Pretest Style versus Posttest Scores

In order to obtain a better picture of the relationship between pretest and

posttest scores, two more scatter plots with best-fit lines illustrate pretest

style scores versus posttest scores. Again, the control group is on the left

and the treatment group is on the right. Both best-fit lines indicate that

higher style marks led to higher posttest scores. However, since the

control group’s regression line has little data on the extremes to confirm

the slope of the line, it could potentially fall anywhere from a slightly

downward slope to a more dramatic upward slope. Both scatter plots

support the contention that higher style scores tended to also be met with

higher posttest scores.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

137

c t

PRETEST_CORR PRETEST_CORR

Figure 6: Pretest Correctness versus Pretest Style

Since it was possible for a person to score well on correctness and poorly

on clarity/style, a scatter plot was created for each group to visualize

correctness versus style scores. These plots are shown above with a

regression line that has a 0.50 confidence interval. In both cases,

participants scored equally well in both categories and the confidence

interval indicates that this tendency was strong. This was not surprising, a

clearly explained solution made it easier to ascertain if a solution was

correct.

These three sets of plots indicated that the pretest correctness scores

were not necessarily a good predictor of success in programming skills.

On the other hand, the ability to clearly express a solution may be a better

indicator for success. It was also possible that the inverse relationship

shown in the control group may be a reflection of the need for tools to

organize solutions into a formal style. Persons with excellent problem

solving skills certainly tend to make good programmers. However,

problem-solving skills that cannot be organized and formalized do not help

with programming. This is an excellent argument for the increased

coverage of pseudocode, diagramming and problem-solving found in the

treatment curriculum, since they all exercise the ability to structure and

formalize problem-solving tasks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

138

Source Sum-of-
Squares df Mean-

Square F-ratio P

Control vs
Treatment 42.339 1 42.339 3.050 0.089

Error 513.558 37 13.880
Table 31: Posttest Analysis of Variance

Posttest data were analyzed using an ANOVA with a constructed

independent variable called “Group,” which held either a ‘t’ for the

treatment group or a ‘c’ for the control group. An F-ratio was computed,

along with its corresponding p-value in order to determine if the observed

difference was statistically significant. This test had higher power than

other tests and was appropriate given that the data to be tested was ratio

data for repeated measures. Hence, this ANOVA served as the simple

effects test for the repeated measure of the posttest across two groups,

the control and the treatment group.

Least Squares Means

12

10

8

6

4 tc
GROUP

Figure 3: Posttest Across Control and Treatment

Visually, the least square means shows that the range for the control

group and the treatment group did not overlap. This indicated that the

difference in scores between the groups were a good candidate for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 139
Robert J Faux, ID 109462

statistical significance. However, the data in Table 30 did not indicate a

statistically significant difference. The p-value of 0.089 was within a

confidence interval of 0.1. However, a confidence interval of 0.05 is

normally required. Therefore, we can only state that members of the

treatment group tend to score higher on the posttest in the observed data.

Source Sum-of-
Squares df Mean-

Square F-ratio P

Control vs
Treatment 0.052 1 0.052 0.009 0.924

Error 207.025 37 5.595
Table 32: Pretest Correctness Analysis of Variance

12

11
0d
Cd

8 10
h '
CO
LU
I - 9
111 cd
CL

8

7

Figure 4: Pretest Correctness Across Groups

A similar analysis approach was applied to each pretest score, and the

correctness values exhibited no difference. In fact, they showed a strong

tendency to fall within the same range, regardless of whether an individual

was in the control or treatment group. This result actually strengthened

the significance of posttest results. Since participants apparently began

the CS1 course with similar problem-solving ability for correctness, then

one group did not enter with an advantage in raw skill. This conclusion

Least Squares Means

T

C t

GROUP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 140
Robert J Faux, ID 109462

effectively eliminated that external variable and further isolated the

treatment curriculum.

Source Sum-of-
Squares df Mean-

Square F-ratio P

Control vs
Treatment 11.510 1 11.510 1.688 0.202

Error 252.233 37 6.817
Table 33: Pretest Style Analysis of Variance

13

£ 11 to,

Figure 5: Pretest Clarity Across Groups

An ANOVA was also applied to the pretest clarity (or style) numbers to

determine if the results were statistically different between groups. There

did appear to be some visual difference between the two groups when a

least square means plot was developed. However, there was clearly

some overlap in the range between groups, which indicated the observed

difference would not be statistically significant. The ANOVA values

confirmed this interpretation and a p-value of 0.202 was calculated.

Although this value indicated an observed difference, it was clearly outside

of the 0.05 threshold value.

Least Squares Means

tc
GROUP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 141
Robert J Faux, ID 109462

Once again, these results confirmed that the groups began the CS1 class

with a comparable set of raw skills. There was some observable

difference in the ability of participants to clearly outline solutions. This

difference could translate into improved ability to program, but the lack of

statistical significance here or in the posttest scores made it impossible to

draw this conclusion.

Source Sum-of-
Squares df Mean-

Square F-ratio P

Control vs
Treatment 45.356 1 45.356 2.787 0.103

Error 602.233 37 16.277
Table 34: Score Difference ANOVA

Least Squares Means

1

o

■1

-2

-3

■4
tc

GROUP

Figure 6: Difference in Scores Accross Groups

The concluding piece of statistical analysis on the test scores utilized the

difference between the pretest correctness scores and the posttest

scores. No analysis of the clarity scores versus posttest scores was

undertaken since the posttest was simply a measure of program code

correctness, not style. Although there was a visible and observed

difference in the measures rendered for the two groups, ANOVA results

again failed to render a p-value below the 0.05 threshold. The calculated

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 142
Robert J Faux, ID 109462

value was 0.103, therefore the observed difference cannot be considered

statistically significant.

5.3 Analysis of Self-Evaluation of Skills
Participants were asked to rate their comfort in their ability to apply four

different skills related to computer science. All of these characteristics

were measured at the beginning and the end of the CS1 course in order to

isolate any changes in confidence. Since two separate groups were

measured at two different points in time, data were checked for significant

differences in two ways. The first was to analyze possible changes over

time, and the second was to analyze values between groups.

The analysis of rating changes over time was performed on each of the

four characteristics for the two groups. This resulted in eight sets of

calculations and constituted an attempt to determine if participants had

altered their opinions for these characteristics after completion of the CS1

course. Collected data consisted of ordinal ratings from one to five, so a

Chi square analysis was performed on the data. Since most of the data

exhibited a standard distribution, an analysis of variance was performed

by calculating F-values and their corresponding p-value in a repeated

measures analysis (pre and post values). Furthermore, a t-test was

performed for two independent means for analysis across groups.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

143

Chi
square df P value df x df y F(x,y) p value

treat computing 3.934 4 0.415 1 14 6.000 0.028
treat math 1.243 4 0.871 1 14 0.189 0.670
treat problem-solve 2.334 4 0.675 1 14 5.914 0.029
treat programming 13.018 5 0.023 1 14 13.618 0.002
control computing 9.260 4 0.055 1 21 2.392 0.137
control math 0.667 4 0.955 1 21 2.100 0.162
control problem-solve 0.115 4 0.998 1 21 0.417 0.525
control programming 8.482 5 0.132 1 21 13.096 0.0016

Table 35: Self-Evaluation Change Over Time

The preceding table reports calculations for both the Chi square tests and

the F tests performed for each characteristic. Chi square tests showed

four degrees of freedom for all but the programming rating, which included

zero values. The change in degrees of freedom for y in the F test

reflected the difference in size between groups. The normally accepted

threshold to indicate statistical significance is p = 0.05; all values below

this threshold are highlighted in bold, italic print.

The only comparison that yielded a statistically significant answer for both

tests was the difference between ratings expressed for the treatment

group’s programming skills. The Chi Square p-value of 0.023 was well

below the required threshold, as was the F test’s p-value of 0.002.

However, because Chi Square can account for the bimodal distribution

exhibited by these ratings and the analysis of variance could not, the first

result was more important. The mere fact that both tests show statistical

significance adds strength to the argument that there was a definite

difference in comfort at the end compared to the beginning.

Other tests that illustrated significance using analysis of variance methods

did not show the same consistency with the Chi square analysis. For

example, values for the treatment group’s problem-solving and computing

scores were deemed to be significant, but were countered by high p-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 144
Robert J Faux, ID 109462

values in the Chi square tests. This reflected distributions that exhibited

higher skew values. For example, the skew for opening scores on

computing was -1.96 and the corresponding skew at closing was -1.33.

This indicated that analysis of variance would not be wholly accurate. As

Chi square does not rely on means and variance, it was not subject to the

impact of this skew. Further, Chi square has lower power as a statistical

test than the analysis of variance. If Chi square indicated that there was

no significant difference for naturally ordinal data, the analysis of variance

could not reliably state otherwise.

The only other characteristics that approached significance for the Chi-

square test were those for the control group’s computing and

programming ratings. The p-value of 0.055 for the computing

characteristic was barely above the threshold. The distribution of this data

was close to normal with skew values of -0.89 at the beginning and 0.0 at

the end. Thus, the analysis of variance had some value, but it returned

only a p-value of 0.137, which was not statistically significant. In other

words, some differences were observed in the data, but it did not meet

sufficient criteria to overcome the likelihood that these results might have

occurred by chance. Similarly, the values for the programming scores in

the control group had a low enough p-value to suggest some difference in

this data. However, the bimodal distribution again rendered the analysis

of variance moot and the Chi square must be relied upon for the measure

of statistical significance.

Perhaps the most important aspect of the analysis over time was that

most characteristics very clearly showed no change between the

beginning and ending measurements. In particular, the math and

problem-solving ratings for the control group exhibited data that remained

remarkably similar. Overall, the programming ratings were the only

characteristic to show observable change for both groups. These results

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 145
Robert J Faux, ID 109462

verified the anticipated change in the subjects’ comfort with their

programming skills by showing consistent intra-rater marks for

characteristics not anticipated to change during the time frame measured.

Thus, the statistically significant difference shown by the treatment group

in rating programming confidence has greater strength given the relative

stability of other characteristics.

pre
computing

pre
math

pre prob
solve

pre post
programming computing

post
math

post prob
solve

post
programming

Chi
square 4.35 0.86 6.91 6.49 1.07 0.12 1.94 0.21
df 4 4 4 5 4 4 4 5
p value 0.360 0.930 0.140 0.261 0.899 0.998 0.746 0.999
df 35 35
t test 1.57 1.13
p value ,1<p<.2 ,1<p<2

Table 36: Satisfaction Measurements Between Groups

The analysis between groups yielded no results within the threshold for

statistical significance. The observed difference between the treatment

and control groups in problem-solving ratings at the beginning of the CS1

course came closest to achieving this status. In this case, the treatment

group scores were observed to be lower, but the Chi square p-value of

0.14 was not adequate to state that this result was more than a chance

occurrence. An analysis of variance was run on this data, since it had a

well-behaved set of variables, but no statistical significance in the

difference was found.

There was also an observed difference between the skill comfort level

ratings in programming at the beginning of the CSO course. This was not

deemed to be statistically significant by the Chi square test, with a p-value

of 0.261. The analysis of variance for these scores meant little for bimodal

data. The raw data (with means of 1.80 for the treatment group and 2.55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 146
Robert J Faux, ID 109462

for the control group) encouraged belief that there was a significant

difference between the groups. However, the double peaks in the

distribution of scores seen in the chart below illustrate how mean values

can mislead analysis.

' treatment
control

Rating

Figure 7: Bimodal Programming Rating

Again, the lack of variability across groups was as important as the

observed differences. In particular, the ratings at the end of the CS1

course were extremely similar between the two groups. The math and

programming ratings were nearly a statistical match, with strong

similarities in the other two items. At the beginning of the CS1 course,

only the math rating showed an extremely strong similarity. There were

observable, but not statistically significant, differences in self-ratings for

problem-solving and programming skills. These results both show the

treatment group rating themselves lower than the control group at the
beginning of the course, only to rate themselves as equals at the end of

the course.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 147
Robert J Faux, ID 109462

5.4 Analysis of CSO Satisfaction Levels
The satisfaction raw data reported in Section 4.5 showed an observable

difference between response data given by the control group compared to

that given by the treatment group. The box plots shown below further

illustrate the apparent difference between the treatment and control

groups. The area of the box represents the most common response area

for each group. There did not appear to be overlap on the scale between

box plots for treatment versus control data during the same measurement

period. Also, these plots showed no apparently significant difference

within groups between the two measurement instances. There does

appear to be significant overlap of the boxes in the plots between both

treatment plots and both control plots.

3.5 4.0 4.5 5.0 5.5 0 1 2 3
TREAT_PRE CONTROL_PRE

2 3 4 5 6 0 1 2 3
TREAT.POST CONTROL_POST

Figure 8: Box Plots for Pretest and Posttest

In order to test the difference between the treatment and the control

groups, a Chi-square test was first used since the data was inherently

ordinal in type. However, a t-test for two independent means was also

used, since it was known that the data exhibited a fairly normal distribution

for all but the treatment posttest, which exhibited two apparent outliers.

The data qualified for the t-test because data was collected from an entire

cohort for each group that consisted of all members of the sample

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 148
Robert J Faux, ID 109462

population for that period in time. The variable for partitioning was the

term of attendance for CS1, with the qualifier that a pertinent CSO course

was attended prior to this course.

Chi
Square df pvalue

Beginning CS1 10.45 4 0.033
End CS1 7.55 4 0.110
Both Ratings 16.76 4 0.002

Table 37: Satisfaction - Chi Square Test

The results of Chi square analysis showed that when all ratings from both

the pre and post measurements were used, there was a highly significant

finding of difference between the control and treatment group. A p-value

of 0.002 indicated that there was a two in one thousand chance that this

difference was merely the result of a chance set of circumstances.

Analysis between groups at the beginning and the end were undertaken

with strong results at the beginning measurement. The difference

between the two groups was again statistically significant with a p-value of

0.033. On the other hand, the two instances shown outside the box plot

range limit the difference at the end of the CS1 course to an observable,

but not statistically significant difference. A p-value of 0.110 indicated a

strong possibility that a difference existed normally for the population.

Mean
Treatment

Mean
Control

N
Treatment

N
Control df tvalue pvalue

Begin CS1 4.40 3.32 15 22 35 3.72 0.001
End CS1 4.00 2.95 15 20 33 2.47 0.02

Table 38: Satisfaction - Independent Means

Two instances were tested by the t-test for two independent means; the

results can be found in Table 38. The first set of measurements occurred

at the beginning of the CS1 course and data was collected on student

satisfaction with the prior CSO course. The treatment group consisted of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 149
Robert J Faux, ID 109462

fifteen subjects and a mean of 4.40 was calculated. The control group

consisted of twenty-two records with a mean of 3.32. With thirty-five

degrees of freedom, the t-value indicated an extremely high confidence

level (p=0.001) that there was a significant difference between the CSO

satisfaction level of the control and treatment groups at the beginning of

the CS1 course.

The second set of measurements was taken at the end of the CS1 course

with a similar question and rating structure. The treatment group

consisted of fifteen subjects compared to twenty for the control group (two

additional members failed to answer this question). Mean values were

slightly lower for each (4.00 for the treatment group and 2.95 for the

control group). It must be noted that several of instances in the treatment

group were not consistent within the data, providing a skew value of -

1.45. With thirty-three degrees of freedom, the t-value again indicated a

high confidence level of p=0.02. Therefore, the difference between

measurements at the end of the CS1 course for satisfaction levels

between the control and treatment groups appeared to be statistically

significant. However, the findings of the t-test were weaker than indicated

by the p-value due to the results of the Chi-square analysis and the

skewed distribution. Therefore, it was only possible to state that the

difference at the beginning was statistically significant. The combined

results of the Chi-square test indicated that there was likely a continued

difference at the end of the CS1 course as well.

Although there was a significant difference in satisfaction between groups,

observed data also showed a decline in ratings between the beginning

and ending measurements. In order to test this for significance, an F-test

(analysis of variance) was undertaken. The format of this study fits the

repeated measures design (also known as the treatments by subjects

design). Only persons who submitted ratings at both the beginning and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 150
Robert J Faux, ID 109462

the end of the CS1 course were used for this analysis. If an individual

chose not to submit a rating during one of the two measurements, their

data were removed as this test looks for significance in changing values

for participants.

Source Sum of Squares df mean squares F value p value
Total 48.32 37
Subjects 28.32 18
Measures 0.95 1 0.947 0.895 0.357
Error 19.05 18 1.058

Table 39: Control Satisfaction Analysis of Variance

The test for the control group yielded nineteen pairs of useful data.

Although the control group consisted of twenty-four individuals, two

individuals chose not to answer this question in the first measure and four

did not answer in the second (one chose not to answer both times).

Nineteen subjects over two measurements yielded a total of thirty-eight

values for total of thirty-seven degrees of freedom. The interest lies in the

possibility that the values across measurements differ. With two

measurements, the degrees of freedom value for calculation of the F-

value was one. Given the value for F(1,18) = 0.895, the p value was

0.357. This means that this F-value would occur by chance roughly 35%

of the time, which is extremely high. Therefore there was no significant

difference between the two measurements in the control group.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

151

Source Sum of Squares df mean squares F value p value
Total 26.80 29
Subjects 19.80 14
Measures 1.20 1 1.200 2.897 0.111
Error 5.80 14 0.414

Table 40: Treatment Satisfaction Analysis of Variance

The treatment yielded fifteen pairs of useful data for analysis. Again, there

were two measurements, thus the degrees of freedom were one for

measurements and fourteen for the subjects. The F(1,14) value was

2.897 which yielded a p-value of 0.111. Although it was quite a bit closer

to indicating that some difference might be consistently found with

additional measurements in the future, it showed no significant difference

in this data.

5.5 Data Mining Analysis

5.5.1 Unsupervised Clustering Analysis
Unsupervised clustering works with a set of input attributes for all

instances of a data set and attempts to find clusters of like instances. To

accomplish this task with the given data, the group identifier field was

removed so that it could not influence the grouping of instances. Data

was placed into a format that allowed the use of the iData Analyzer

software provided with the Roiger and Geatz (2003) text (for details of the

data setup and data mining processes, please visit chapter three). All

data mining sessions utilized the ESX tool provided by the software.

Several sessions were undertaken with varying subsets of attributes used

as input for the data. Three of the more interesting and/or representative

sessions are discussed in this section.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

152

5.5.1.1 Unsupervised Cluster with All Attributes

Class 1 Class 2 Class 3 Class 4 Domain
Res. Score:
No. of Inst.

0.323
18

0.382
3

0.358
3

0.35
15

0.29
39

Cluster Quality: 0.11 0.32 0.23 0.21
Table 41: Unsupervised Session 1 Clusters

The unsupervised clustering with all attributes as input fields resulted in

four classes when an ESX similarity score of 35 was used and a tolerance

of 1.0 for real valued data was selected. The overall domain resemblance

score was 0.29. Thus, resemblance scores over this were expected for

each class. A higher cluster quality number indicated how closely

members of each class resembled each other. This session exhibited a

pattern seen in most sessions with this data; two classes tended to claim a

majority of the instances, while other classes included much smaller

numbers of instances. In this case, thirty-three of the thirty-nine records

belonged to either class 1 or class 4.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

153

Class 1 Class 2 Class 3 Class 4 Domain
pretotl (mean) 9.39 7.00 11.33 10.67 9.85

(sd) 2.00 3.00 1.53 2.26 2.33
pretot2 (mean) 9.72 6.67 10.00 11.47 10.18

(sd) 2.42 2.52 2.65 2.26 2.64
posttot (mean) 5.94 8.67 4.33 11.80 8.28

(sd) 2.44 3.51 1.53 2.60 3.83

diff both (mean) (3.61) 1.83 (6.33) 0.73 (1.73)
(sd)

Most common
attribute values

2.32 6.25 3.06 3.29 3.96

group c t c t
excomputer 5 3 5 5

exmath 4 5 3 5
exprobsolve 4 2 3 4

exprog 4 1 3 4
colgrade b a c a

CsO grade b b c a
precomputer 4 5 4 4

premath 4 4 3 4
preprobsol 3 4 4 4

preprog 4 0 0 0
Table 42: Common Attributes Session One

The two larger groups (groups 1 and 4) could be characterized as those

instances where the individual generally did poorer on the posttest (class

1) and those who did well on the posttest (class 4). In fact, these groups

also tended to show some difference in pretest scores as well, with a

slight advantage in pretest scores. However, the difference in scores

between the pre and posttest showed a decided drop (an average drop of

3.61 out of 20) for the class 1 instances. Of interest is the fact that most of

the class 1 members were from the control group (fourteen), with only a

small number from the treatment group (four). On the other hand, the

majority of class 4 members were from the treatment group (nine) as

opposed to the control group (six). Both groups tended to rate themselves

highly on their own skill levels, but self-reported grades differed, with a

tendency toward A’s in group 4 and B’s in group 1 for both the CSO course

and college grades in general. On the other hand, most of group 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 154
Robert J Faux, ID 109462

members had no prior programming experience, while most of group 1

had such experience.

The smaller groups identified two special case groups within the data.

Class 3 identified a set of three instances where individuals reported a

history of poorer performance with C grades and lower self-assessment

ratings. These individuals did well on the pretest and very poorly on the

posttest, showing significant drops in their scores. All three members of

this class came from the control group. On the other hand, class 2

consisted of two members from the treatment group and one from the

control group. These individuals tended to do poorly on the pretest and

roughly as well on the posttest. They tended to report better grades, but

gave themselves lower self-assessment ratings at the end of the CS1

class.

Class 1 Class 2 Class 3 Class 4

Exprog =4 2 <= diff <=2 -9 < diff <= -7 7 <= posttot <=16

Post2 = 1 Colgrade = c -3 <= diff <= 7

Post3 = 1 Colgrade = a

Post4 = 1 CSO = a

10 <=pretot2 <= 13

1 <= posttot <= 9

-6.50 <= diff <= -1

Colgrade = b

Table 43: Session One Rules

The iData Analyzer software generated a set of rules for each of the four

classes. These are displayed in the previous table and clearly indicate

that a broader set of conditions applied to the two larger groups. Of

particular note for class 3 is the large drop in scores (-9 to -7) between the

pretest and posttest combined with a tendency to receive lower grades in

college than most other participants in the study. While the pretest scores

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 155
Robert J Faux, ID 109462

indicated that these persons had raw ability in problem-solving, the self-

reported average college grade indicated that these persons may be

having a difficult time adapting to the college environment.

The differences between the two larger classes (class 1 and class 4) were

of particular interest. It was clear that the posttest scores covered

different ranges (1 to 9 in class 1 and 7 to 16 in class 2); thus, it seemed

that a major part of the grouping was based on score success. Similarly,

the difference between pretest and posttest scores tended to be more

positive for class 4 than for class 1. This seemed to be a positive indicator

that the treatment group had faired well, since the majority of instances in

class 1 belong to the control group and the majority of class 2 to the

treatment group. However, countering this was the tendency for members

of class 4 to have self-reported A-grades in college, versus B-grades in

class 1. Furthermore, class 4 instances also received more A grades in

the CSO course (although this seemed mildly redundant as participants

reported an A average for all college courses). Therefore, part of the

grouping was influenced by overall college performance, which could

account for some of the uncertainty exhibited in the data analysis

presented in prior sections.

5.5.1.2 Unsupervised Cluster with Grade History Removed

______________ Class 1 Class 2 Class 3 Class 4 Class 5
Res. Score: 0.355 0.397 0.353 0.365 0.353
No. of Inst. 18 4 2 13 2

Cluster Quality: 0.13 0.27 0.13 0.17 0.13

Table 44: Unsupervised Session 2 Clusters

The prior data mining session illustrated in 5.5.1.1 indicated that the

college grade performance might have had a strong influence over the

classification of individuals. Thus, another session was run with the grade

history attributes for college, high school and CSO removed to test their

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 156
Robert J Faux, ID 109462

impact. The same similarity scores and software variables were selected

and the resulting classes were fairly similar with respect to the numbers of

control and treatment instances in the two larger groups of individuals.

Class 1 consisted of thirteen control group and five treatment group

members, whereas there were eight treatment and five control members

in class 4.

Class 1 Class 2 Class 3 Class 4 Class 5 Domain
pretotl (mean) 9.17 10.50 10.00 11.23 5.50 9.85

(sd) 1.89 1.73 1.41 2.20 2.12 2.33
pretot2 (mean) 9.39 9.75 8.50 12.39 5.50 10.18

(sd) 1.94 2.36 0.71 2.10 2.12 2.64
posttot (mean) 7.78 5.00 8.00 9.69 10.50 8.28

(sd) 4.25 0.82 7.07 3.01 2.12 3.83
diff both (mean) (1.50) (5.13) (1.25) (2.12) 5.00 (1.73)

(sd) 4.02 2.66 8.13 2.53 4.24 3.96

Table 45: Session Two Attributes

There was a shift of instances across groups once self-reported grades

were removed; however, the core of most of the groups remained. Class

5 consisted of two instances that came from class 2 of the prior session. It

became evident that these two individuals stood out because they rated

themselves extremely poor at problem-solving and computing at the

beginning of the CS1 course. Both were members of the treatment group

and both improved markedly between the pretest and posttest. Class 2

consisted of individuals who showed a pronounced drop between the

pretest and posttest and consisted of two instances from class 3 of the

prior data mining session. Two additional control group instances joined

this set, which clearly represented those who did comparatively poorly in

the posttest as compared to the pretest indications. Class three presented

an oddity, the individuals did equally well on the pretest, but one improved

dramatically, while the other declined dramatically. Both members came

from the control group. The pairing appeared to have originated due to an

exact match of individual question scores on the pretest.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 157
Robert J Faux, ID 109462

The two larger classes did not show the pronounced change in difference

between pretest and posttest scores, yet they did show higher pretest and

posttest scores for class 4 versus class 1. Again, class 4 is largely

populated with treatment group members, while class 1 has a majority of

control group instances. These two mining sessions provided additional

information about the possibility of external variables (in this case,

academic history) that contributed to the differences between the control

and treatment groups. Additional statistical testing showed that, between

the treatment and control groups, the difference in college grade history

could not be discounted. A Fisher’s Exact Test gives a p=0.0724, which

was on the verge of a significant difference. Between the data mining

session results and this statistical test, it seemed important to check if

there was a relationship between the college grade reported and the

difference found between the pretest and posttest scores. Paired t-test

calculations gave p-values that are inconclusive and not near the

significance threshold. Therefore, there was not a significant impact

recorded for this external variable. However, it was likely that some

relationship between past college performance and performance in the

CS1 class existed in some fashion for testing results. This data could not

conclusively reveal what that relationship might have been, nor could it

exclude the possibility that the treatment curriculum also had an impact on

scores.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

158

5.5.1.3 Unsupervised Cluster without Individual Question Scores

Class 1 Class 2 Class 3 Class 4 Class 5
Res. Score:
No. of Inst.

Cluster Quality:

0.436
22

0.19

0.38 0.419 0.457 0.38
1 5 10 1

0.04 0.14 0.25 0.04

Table 46: Unsupervised Session 3 Clusters

Since, individual question score attributes could very well be redundant

with the total scores, removal of these were expected to provide a clearer

view of the real impact score values had on the classification process. A

similarity score of 37 was used for this data mining session and all other

variables were kept constant with the first session described in 5.5.1.1.

This approach yielded two outlier instances and two larger groups, as well

as one smaller sized group. One outlier came from the treatment group

and the other from the control group. The treatment outliers distinguished

themselves by providing very low self-rating data and the control outlier

was isolated due to failure to answer many of the self-rating questions.

Class 3 consisted of five instances, all from the control group, who

showed a marked decline in testing scores. Again, this type of class

appeared in previous data mining sessions with occasional changes in the

borderline or special cases. Once again, class 1 consisted of persons

with lower test scores while class 4 consisted of those with higher test

scores. The means and standard deviations for these classes are shown

below. Unlike some of the prior data mining sessions, the standard

deviation for the posttest scores were a bit tighter for classes 3 and 4, but

class 1 continued to cover a broad range.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

159

Class 1 Class 2 Class 3 Class 4 Class 5 Domain
Pretotl (mean) 9.23 4.00 11.00 11.30 9.00 9.85

(sd) 1.82 NA 1.23 2.58 NA 2.33
Pretot2 (mean) 9.82 4.00 9.60 11.80 11.00 10.18

(sd) 2.24 NA 2.07 2.82 NA 2.64
posttot (mean) 7.77 12.00 4.40 10.90 9.00 8.28

(sd) 4.13 NA 1.14 1.79 NA 3.83
diff both (mean) (1.75) 8.00 (5.90) (0.65) (1.00) (1.73)

(sd) 4.09 NA 2.41 1.80 NA 3.96
c t c t c

Table 47: Session Three Attributes

The generated rule set showed the expected rules for class 3 (which

collected instances where performance dropped significantly) and class 4

(which collected instances where there was little change in test scores).

The majority of instances for class 4 (eight of ten) came from the

treatment group. On the other hand, there was a large subset of rules

used to gather instances to class 1. Sixteen control group members and

only six treatment group members populated this class. Many of the rules

exhibited here matched the rules shown in the first data mining session for

class 1; however, additional rules for self-rating scores were added.

Class 1 Class 3 Class 4

exmath = 4 -9<=diff<=-6.5 -2<=diff<=2

Exprobsolve=4

Exprog = 4

9<=pretot1<=11

10<=pretot2<=13

1 <=posttot<=8

-6.5<=diff<=-2

Colgrade = b

Premath=4
And other combinations

Table 48: Session Three Rules

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 160
Robert J Faux, ID 109462

The addition of self-evaluation data to the already existing rule set

indicated that these factors were of secondary importance for

classification. The limited change in classes also indicated that there was

very little to be learned from individual question scores on the pretest and

posttest. Furthermore, most demographic attributes were conspicuous by

their absence, with the exception of the previously discussed grade

history. Thus, the focus of continued data mining sessions needed to be

on scores and grade history.

5.5.1.4 Unsupervised Cluster without Self-Evaluation Attributes

Class 1 Class 2 Class 3 Class 4 Domain
Res. Score:
No. of Inst.

Cluster Quality:

0.364
16

0.08

0.405 0.432 0.519 0.34
17 4 2 39

0.21 0.29 0.54

Table 49: Unsupervised Session 4 Clusters

This data mining session isolated the relationship self-evaluation ratings

might have had on the cluster results. A similarity score of 37 was used

and all other variables were similar to the other data mining sessions. As

with the other sessions, there were two large groups and several smaller

groups. Once again, class 3 consisted of persons from the control group

who showed a large decline between pretest and posttest scores. Class 4

consisted of two treatment instances where grading background and

individual questions scores were quite similar. Class 1 consisted of twelve

control members and four treatment members, whereas class 2 consisted

of nine treatment and eight control instances. Thus, the split was not as

pronounced as it had been with the self-evaluation data.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

161

Class 1 Class 2 Class 3 Class 4 Domain
pretotl (mean) 8.94 10.88 11.25 5.50 9.85

(sd) 1.77 2.15 1.26 2.12 2.33
pretot2 (mean) 9.25 11.77 9.50 5.50 10.18

(sd) 2.11 2.14 2.38 2.12 2.64
posttot (mean) 5.94 11.06 4.75 10.50 8.28

(sd) 2.65 3.17 1.50 2.12 3.83
diff both (mean) (3.16) (0.27) (5.63) 5.00 (1.73)

(sd) 2.29 3.99 2.87 4.24 3.96
c t c t

Table 50: Session Four Attributes

There appeared to be some classification based on test scores and the

differences between the pretest and posttest. However, the two larger

groups continued to exhibit rather large standard deviations on the

posttest and difference in particular. The rules set (which can be seen in

the table below) gave more strength to the combined impact of grade

history with overall test scores compared to individual test scores or

demographic data. The rule set change did indicate that there was some

influence exerted by the self-evaluation data in classification and that they

could not be completely discounted from the overall equation of factors

that influenced the success of persons in the CS1 course.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

162

Class 1 Class 2 Class 3 Class 4

Post4 = 1 Preq2met = psu Colgrade = c 2 <= diff <= 2

1 <= posttot <= 5 Postl = 5 4<=pretot2<=4

and

4<=pretot1 <=4

Colgrade = b 12<=pretot2<=16

9<=posttot<=16

-1.5<=diff<=7

Colgrade = a

CSO = a

CSO = a and

9<=posttot<=16

Table 51: Session Four Rules

5.5.2 Supervised Learning Analysis
Supervised learning looks for patterns that give particular classifications

for a given attribute, while unsupervised clustering has no such restriction

placed upon it. Supervised learning analysis on the data collected for this

study focused on the attempt to generate rules to classify between the

control and the treatment group. In each session, two-thirds of the data

was used to train the data-mining tool and to allow it to generate a rule

base for placing instances into either the treatment or the control groups.

The remaining one-third of the instances was used to test the resulting

rule base. Data were sorted by identification number so that selection of

training instances approached random selection. Also, the first two-thirds

of the members from each group were used to train. For example, ten of

the fifteen treatment group instances were used in training and five were

used to test the results. Three data mining sessions were selected as a

representative sample of results for this report.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

163

5.5.2.1 Pretest & Posttest Totals as Learning Input

Class c1 Class t Domain
Res. Score: 0.596 0.444 0.54
No. of Inst. 16 10 26

Class Significance: 0.11 (0.17)

Table 52: Supervised Session One

This data mining session focused only on pretest and posttest total scores

and the difference between these scores. This limited data set was used

to determine if the test scores alone could classify between the control

and treatment groups. Class resemblance scores (shown above)

indicated that members of the treatment group training set were actually

less similar than the group as a whole (0.444 resemblance score versus

0.54 for the entire group). This was viewed as an indication that the

attempt to classify based on this subset of attributes would likely not be

successful.

Rules for both classes were generated using the iData Analyzer, first by

allowing it to use all instances in the test set to generate the rules, and

then by using only the most typical instances to generate the rule set.

When all instances were used, the only rule produced was for the control

group. This rule prescribed a range for the pretest correctness score (10

<= pretotl <= 13) for the control group with a rule accuracy of 76.92%.

Using only the most typical instances, a rule was generated for each

class. The control group rule was similar to that created before, but with a

tighter pretest correctness bound (10 <= pretotl <= 11). The treatment

group generated a rule based on the difference between pretest and

posttest scores (-2.5 <= diff <= -1.5) that illustrated minimal change in

score between the pretest and posttest. This was the only rule that had

any link to the posttest score for this data mining session.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

164

Confusion Matrix_____________
Computed Class

c1 t
c1 7 1
t 3 2

Percent Correct:________69.0%

Table 53: Confusion Matrix - Supervised One

The error rate was 31% of the test instances fed into the generated model.

In particular, this model had difficulty with treatment cases, misplacing

three of five in the control group. In fact, this model tended to favor

placement in the control group. This made some sense, since the

generated rule favored persons with average scores in pretest

correctness, so most persons fell into this range. The calculated upper

error bound was 56.7%, which meant the accuracy of this model wa no

better than a toss of the coin for classification of future instances. Much of

this was a product of the relatively small number of instances available

and the wide range of possible factors influencing the data.

5.5.2.2 Totals and Individual Test Scores as Input

Class c1 Class t Domain
Res. Score: 0.285 0.287 0.28
No. of Inst. 16 10 26

Class Significance: 0.03 0.04

Table 54: Supervised Session Two

Total scores appeared to be inadequate predictors; therefore individual

test scores were added to the input data set to determine if there were

results within the test scores that had more influence than the total scores.

With these additional attributes, the class resemblance scores were much

lower, indicating a broader diversity across the wider range of attributes.

However, both the control and treatment classes maintained resemblance

scores that were similar to the domain resemblance. This made it more

likely that there could, in fact, be some differentiation between the classes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

165

Control Group Treatment Group

Pretest Quest 2 Clarity = 3 -2.5 <= Difference <= 2.0

Posttest Quest 4 = 1

10 <= pretotl <=13

10 <= pretot2 <= 13

3 <= posttot <=10

-9 <= difference <= -2

Table 55: Supervised Two Rule Set

Six rules were generated for the control group and one was generated for

the treatment group. The pretest scores in the midrange (for the control

group) appeared in the third and fourth rules generated. However, the

most interesting information was that those with a larger drop between

pretest and posttest scores (rule 6 for control group) were placed in the

control group. Those with scores that tended to show little change (rule 1

for the treatment group) were placed in the treatment group. Also, those

who scored poorly on the posttest (scores between three and ten

inclusive) tended to belong to the control group with this rule set.

Rule 2 provided some interesting insight into the data by claiming that a

person scoring one of five points on the fourth question in the posttest

would likely be a control group member. The rule accuracy for this rule

was higher than all those below it (81.82% rule accuracy), which indicated

that persons who did very poorly on this problem tended to be control

group members.

Confusion Matrix
Computed Class
c1 t

c1 6 2
t 1 4

Percent Correct: 76.0%

Table 56: Confusion Matrix - Supervised Two

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 166
Robert J Faux, ID 109462

Application of this rule set to the test group provided a much more

successful placement of instances into the proper classes. One of the

control group instances was shifted from control to treatment, but two of

the incorrectly placed treatment instances were correctly placed in this

session. The upper bound error was 47.7%, which was substantially

better than the first data mining session. However, this bound also

indicated that these results were far from conclusive.

5.5.2.3 Totals, Demographics and Self-Evaluation Data as Input

Class c1 Class t Domain
Res. Score: 0.36 0.388 0.36
No. of Inst. 16 10 26

Class Significance: 0.01 0.08

Table 57: Supervised Session Three

This data mining session used all fields as input except for the individual

question scores in the pretest and posttest. And, as with the other

sessions, the resemblance scores for the two classes were not

significantly different from the overall domain resemblance score.

However, it was extremely interesting to note that the rule set had strong

similarities to the rules generated in the session reported in section

5.5.2.2. All of the test score related rules appeared as they did in that

session with similar accuracy ratings. An additional rule was added to the

treatment group rule set for reported ‘A’ average grades in college. For

the control group, two rules indicated that members tended to report high

comfort (a four rating out of a one to five scale) with problem-solving and

programming. This was interesting considering this same group also

generated a rule indicating a tendency to score poorly on the posttest (rule

5 for the control group). The final rule for the control group was that the

gender of members tends to be male. This rule was relatively weak, given

an accuracy of 66.7%, which was a reflection of the overall demographics

for participation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

167

Control Group Treatment Group

Exit Prob Solve = 4 -2.5 <= Difference <= 2.0

Exit Programming = 4 College grade = ‘a’

10 <= pretotl <=13

00IIVCM
-*—* o£Q.IIV

OT-

3 <= posttot <=10

-9 <= difference <= -2

Gender = M

Table 58: Supervised Three Rule Set

The confusion matrix for this rule set showed that it was the least

successful in categorizing the remaining instances of the three reported

data mining sessions.

Confusion Matrix_____________
Computed Class
c1 t

c1 3 5
t 1 4

Percent Correct:________53.0%

Table 59: Confusion Matrix - Supervised Three

This model tended to favor placing persons into the treatment group rather

than the control group. The rule set was similar in rules created for test

scores in the previous data mining session, so it was sensible to conclude

that the new rules were the primary source for confusion in classification.

The upper error bound for this supervised learning session was 74.7%,

which indicated that this approach was potentially worse than a simple

random selection.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

168

5.6 Qualitative Analysis
5.6.1 Pretest and Posttest Qualitative Data

The qualitative data reported in Chapter 4 provided some interesting

information about the tendencies of participants to handle the testing

situations. For example, the pretest was administered before any

programming had been covered in the CS1 course. Therefore, students

were forced to choose their own method of approaching the problems in

the pretest and exhibiting their solution and solution process. Qualitative

data was collected to determine if there was a difference in approach

between the control and treatment groups. The posttest, on the other

hand, required that the student provide a programming solution, so there

was no longer the broad variation in choice of presentation. However,

data were collected regarding any and all additional information provided

by the participant on the test as they worked through and presented their

solutions.

The treatment group exhibited a trend towards using pseudocode with

consistency on the first two problems in the pretest. Although the control

group did exhibit a tendency to use pseudocode on the first problem, the

quality of this pseudocode tended to be poorer. In fact, many in the

control group simply attempted to provide a solution by writing a

paragraph describing their ideas. In contrast, only one person used this

approach in the treatment group for the first two problems. All but one

person used pseudocode as at least part of the description in the

treatment group for question one, compared to eight for the control group.

Therefore, it was reasonable to conclude that the treatment group felt

more comfortable with using this tool to describe algorithmic solutions.

The second significant trend in the pretest was the absence of

indecipherable scribbles provided as evidence of work for question four for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 169
Robert J Faux, ID 109462

the treatment group. Many in the control group (six persons, or 33%

answering the question) provided scrawls or treatments that were

impossible to get much meaning from as evidence of their work on the

problem. On the other hand, the treatment group tended to provide

pictures and words that could be more easily deciphered. There were no

instances where a question in the treatment group was marked as having

indecipherable supporting materials on the pretest.

In the posttest, there were also two significant trends. The first was the

use of non-coded solutions in lieu of coded solutions on the posttest by

members of the control group. There were three individuals who

accounted for all five instances of this occurrence, and in each case, it

seemed obvious that the individual was not able to provide even a start to

a programming solution to the problem. Thus, these individuals opted to

show problem-solving knowledge without exhibiting programming

knowledge in these cases. On the other hand, no such instances of

substituting programming solutions with words or other options occurred in

the treatment group. All treatment group solutions included some

component of programming in the target language.

The second posttest trend was the tendency of treatment group members

to use pictures to supplement their programming efforts. The control

group exhibited one instance of a picture as supplemental information,

one with pseudocode, and two with additional words. The treatment group

exhibited seven instances of additional pictures and three instances of

additional words to supplement the programming solution. In these cases,

programming solutions accompanied the additional materials. In fact, it

appeared evident that most additional information was intended to aid the

student in determining the programming solution, rather than to impress

the individual marking the posttest. This appeared even more evident

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 170
Robert J Faux, ID 109462

given the fact that these tests were not graded events and thus had no

impact on their course grade.

5.6.2 Demographic Tool and Exit Survey Qualitative Data
Questions concerning the best and worst parts of CSO uncovered opinion

patterns that were encouraging for the improved coverage of problem

solving and algorithm coverage in that class. These comments became

stronger at the end of the CS1 course, which increased their validity (as

they were voiced after participants had experienced the CS1 course).

Regardless of the group, members tended to single out algorithm

development and problem-solving as key components of the CSO

experience. However, every member of the treatment group made such a

comment in the exit survey, as opposed to seventeen of twenty-four

members of the control group. Thus, it is reasonable to state that the

treatment group was wholly convinced that these topics were applicable

and useful to their programming tasks.

On the negative side, a subset of individuals in the control group isolated

the section of curriculum where brief overviews of programming languages

were given. None of the treatment group mentioned this section, which

may indicate that the instructor used that segment to occupy time that was

filled in the treatment group with the new curriculum. Also, one participant

noted that the group work section provided in the new curriculum was not

(in their eyes) complete. In retrospect, the researcher would tend to agree

with this opinion, but it did sufficiently round out the curricular segment for

the purposes of this study.

Perhaps the most significant result was that there was no mention of

algorithms, pseudocode, diagramming, or problem-solving in comments

outlining the least useful parts of CSO. Obviously, since most individuals

were citing all or part of this subset as a positive, it would have been odd

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 171
Robert J Faux, ID 109462

to see negative comments here. Individuals in each class made it clear

that they felt the entire CSO class was a waste of their time; however,

even these individuals chose not to select these topics as negatives, and

many chose to list them instead as positives.

When asked to provide ideas for improving the curriculum, some pointed

comments by the control group indicated that they would have liked more

material on problem-solving. There was one notable exception that stated

a strong belief that CSO should be skipped and that students should go

right to programming. This statement was counterbalanced by the

number of persons who stated that their fear for CS1 was that they would

not be able to get a handle on all of the syntax of the C++ programming

language. These individuals would benefit most by separating the

learning curve for beginning problem-solving skills from that of learning

programming syntax.

On the other hand, there were few comments suggesting improvement

made by the treatment group, and none of them asked for more problem

solving. In fact, their comments tended to be much more specific to

events in the CSO class and less general in nature than those provided by

the control group. This might indicate that students felt the class had a

more cohesive purpose and order and that they were aware of why topics

were covered in the fashion they were presented.

The final point to be made is that there did not appear to be any strong

undercurrent with respect to the teacher, the learning environment, and/or

events beyond the control of this study. There was one individual who

sang the praises of their instructor in the CSO course, but since this

instructor was the same for both groups, it would not have impacted

results even if several students had felt that way. There were some hints

that perhaps there were topics covered in the control group CSO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 172
Robert J Faux, ID 109462

experience that were not in the treatment group CSO experience (such as

introductions to various languages). However, since the researcher was

assured that there were no substantive changes made other than the

curriculum submitted to BSU, it seemed reasonable to assume that any

unreported changes were minor adjustments, as the instructor did not see

fit to mention them.

5.7 Interpretation of Findings
The most pertinent and important findings of this study are summarized

below. Details about each may be found in the prior analysis sections in

this chapter and in the data reporting section in Chapter Four.

• Posttest scores between the control and treatment groups did not

indicate a significant difference between the two (p = 0.089). But

there was an observed difference, with the treatment group scoring

higher on the posttest.

• Pretest correctness scores between the control and treatment

groups did not show statistically significant similarity (p = 0.924)

• Treatment group programming self-evaluation scores were

significantly different at the end of the CS1 from the scores

received at the beginning of the CS1 class (p = 0.023). Similar

scores for the control group were not significantly different.

• The self-evaluation scores for programming at the end of the CS1

course were statistically similar for the treatment group and the

control group (p= 0.999).

• The satisfaction scores for the CSO course were significantly

different between the two groups with p values below the threshold.

• Unsupervised clustering data mining sessions developed rules and

classifications largely based on test scores and self-reported

college grades.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 173
Robert J Faux, ID 109462

• Supervised learning data mining sessions confirmed rules based on

test scores, but showed increased confusion when college grades

were added to the rule base.

• Data mining results based on test score rules illustrated a tendency

for lower posttest scores and larger drops in scores between the

pretest and posttest for the control group.

• Pretest qualitative information illustrated a greater tendency by the

treatment group to use pseudocode.

• Pretest qualitative information showed a tendency for control group

members to use indecipherable scribbles, whereas the treatment

group did not exhibit this.

• Posttest qualitative information uncovered a tendency for members

of the treatment group to use pictures to supplement coding

development.

• Posttest qualitative results included instances where control group

members provided non-programming answers on a programming

test, but there were no such instances for the treatment group.

• Open-ended questions used to isolate positive and negative

aspects of the CSO course uncovered very strong support for

problem-solving, algorithms, pseudocode and diagramming in both

groups which increased on completion of the CS1 course.

• Open-ended questions emphasized student concern that they

would not be able to master all of the pertinent programming

language syntax necessary in the CS1 course.

These findings are interesting in that they tend to support each other in

several ways. First, it seems clear that members of the two groups tended

to approach the tests in different ways. Second, participants between the

two groups appeared to have a different feeling for their CSO class

experience. Third, members of both groups gave themselves identical

comfort level ratings for programming (despite different starting points) at

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 174
Robert J Faux, ID 109462

the end of the CS1 course. And finally, members of the treatment group

tended to score better on the programming posttest than members of the

control group (although this difference is just outside the threshold for

statistical significance).

These results support Subordinate Hypothesis number one, which claimed

that these changes to the curriculum would result in a measurable

increase in satisfaction for the applicability of the CSO course. Members

of the treatment group gave ratings that were, on average, a full point

higher on a five-point scale for this course. This was directly supported by

the generally positive comments for the course from the treatment group,

as compared to the highly qualified and particular negative comments. On

the other hand, the control group was much more liberal with criticisms for

the course. Thus, it can be stated that the curricular changes had some

impact on improving satisfaction in the experience.

These results do not support Subordinate Hypothesis number two as it

was intended to be measured. This hypothesis claimed that there would

be an increase in the self-evaluation rating for programming with the new

curriculum. Although there was a significant change in confidence for the

treatment group between the beginning and end of the CS1 course, an

increase in confidence between groups cannot be demonstrated. In fact,

the scores were statistically similar at the end of the course for both

groups. However, the treatment group began with less programming

experience than the control group, allowing them to exhibit a significant

change over time. Overall, however, this subordinate hypothesis must be

rejected.

The overall null hypothesis, that there would be no measurable difference

in the exhibited learning of programming skills between the two groups,

was also rejected. In particular, it should be noted that pretest correctness

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 175
Robert J Faux, ID 109462

scores were very nearly statistically identical, whereas posttest scores

were very nearly statistically different between groups. This indicates that

both groups had fairly similar natural skills at the beginning of the course.

However, the second group fared better in applying those skills to

programming. Data mining results also supported the tendency to

differentiate between groups based on posttest scores, particularly on the

drop exhibited between pretest and posttest scores by the control group.

Finally, qualitative data illustrated that members of the treatment group

actually used tools provided them in CSO in order to support their work in

both the pretest and posttest. This alone exhibited a difference in how

they approached the problem of learning to program.

This study was, however, unable to extend the results to the alternate

hypothesis, which stated that there would be a measurable change in

programming ability between the groups. While there were observable

differences, they were not statistically significant within an acceptable

threshold of probability. Furthermore, there were simply too many outside

variables that could not be fully accounted for. For example, although

data mining results indicated limitations on the impact of differences in

historical college grades reported, the possibility that prior successes led

to additional success in learning programming cannot be dismissed.

In addition, there were numerous other factors that could not be

accounted for in this study, such as teaching differences from one

semester to another. For example, it is entirely possible that results in this

study were partly a product of the ‘Hawthorne effect,’ observed in

instances where an instructor’s own enthusiasm for a new approach or

material is conveyed to students. This kind of impact was lessened

somewhat by the researcher’s distance from the practicing instructor.

Furthermore, participating instructors were not recruited for their

willingness to agree or disagree with the researcher on pedagogy. It is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 176
Robert J Faux, ID 109462

even possible that the instructor’s reduced familiarity with the new material

might have led to some confusion and discomfort in the classroom, which

would have mitigated against the Hawthorne effect.

Other external variables were collected as demographic data in this study

and subjected to statistical tests and data mining sessions to determine if

these factors might have influenced the results. The only external variable

that appeared to have any influence over the results was the self-reported

average college grade, or the self-reported CSO grade. Other variables

were successfully eliminated with statistical tests. This was confirmed by

the corresponding lack of such information in the rule sets for the data

mining sessions.

5.8 Summary of Findings

5.8.1 Extensibility of the Study
It has been shown that, given the sample population at Bemidji State

University and the sample population of undergraduate computer science

programs, the sample for this study was representative of a typical small

to mid-range post-secondary school in the Midwestern United States.

Both the control and treatment groups came from all possible candidates

for the computer science program at BSU during the academic terms of

the study, so no self-selection was possible. On the other hand, the

sample size was small enough that the application of the results cannot be

extended beyond sample populations that resemble the population at

Bemidji State University. Therefore, this researcher concludes that

altering current computer science programs in similar environments to

include increased and focused coverage of problem-solving, algorithm

development, pseudocode, and diagramming should result in improved

programming learning for participants.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 177
Robert J Faux, ID 109462

These results may be extensible to a broader population, but research

with a broader sample would have to be undertaken to investigate this

possibility. It is also acknowledged that similar institutions might find

divergent results depending on the surrounding curriculum, willingness of

faculty to implement changes, and environmental variables. The strongest

statement that can be made as a result of this study is that computing

programs should consider covering problem-solving, algorithm

development, pseudocode, and diagramming prior to programming. The

results of this study indicate that the outcome would likely be (at worst)

similar to programming first approaches and (at best) better than a

programming first approach.

The data suggest that the effectiveness of these curricular changes vary

depending on individual student characteristics. This is not surprising, of

course, since learning is a personal endeavor and it would be

inappropriate to suggest that one approach is sufficient for all persons.

This study did not attempt to break the population into subgroups, but

there is sufficient information to suggest that certain types of students may

benefit more from this approach than others.

5.8.2 Results in Context of Body of Knowledge

The results of this study confirm or extend what is currently understood

within the computer science education body of knowledge for introductory

courses. Self-efficacy studies such as those by Quade (2003) and

Ramalingam and Wiedenbeck (1998) linked program-solving to computer

science and to programming. This study suggests a link between

teaching problem skills specific to computer science and programming

and success in improving early programming skills. Other studies by

Applin (2001) and Bailie (1991) argued that there are learning advantages

when advanced organizers are provided to learners. In fact, Proulx (2000)

argued that problem-solving concepts are lost and syntax takes over when

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 178
Robert J Faux, ID 109462

the programming language is the initial problem-solving tool for many

students. The curricular changes outlined in this study provided advanced

organizers for programming that appeared to aid in learning. Also, tools

were provided that allowed the focus to remain on problem-solving

concepts rather than syntax during early learning.

Control group members appeared to have fewer opinions on the

applicability of the CSO course and were less satisfied with it; the

treatment group was comfortable with the goals and applicability of the

course. This correlates with works such as that provided by Powers and

Powers (2001), which claim that inaccurate notions about purpose and

goals in learning can be detrimental to future learning. A stronger sense

of what computer science is all about and the place their learning has

within the whole encourages students to continue in the program (Sanders

and Mueller, 2000). Students who have a better sense of their learning

goals tend to do a better job following through with their learning (Black

and Deci, 2000). Furthermore, treatment group participants illustrated

their ability to draw connections between CSO subject material and CS1

subject material by exhibiting more instances of applying diagramming or

pseudocode solutions on the pretest and posttest. Pedagogically, this

supported both spacing and spiraling, which support learning (Powers,

2002).

This research does not provide direct support for or against breadth-first,

breadth-also or depth-first approaches to CSO, although the generally

positive results do indicate that the breadth-first model can become more

successful with careful consideration of the courses surrounding it in the

program. Furthermore, studies such as that provided by Stein (2002)

show a link between success in an introductory course leading to success

in subsequent courses in a sequence, so increased success in CSO

should certainly increase the likelihood of success in CS1. In fact, this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 179
Robert J Faux, ID 109462

study provided some evidence that persons doing well in CS1 had

received outstanding grades in CSO. The positive results of this research

also indicate that using a spiraling approach (where problem-solving

concepts are introduced outside of programming and then reintroduced in

programming) could be effective, regardless of the curricular model.

It could be argued that the modified curriculum prepared students for

future success in computer science learning by allowing them to construct

a framework for that success. The pretest scores for both groups were

statistically similar, indicating that raw problem-solving abilities were

roughly equivalent. However, CSO reported grades were different. An

argument could be made that students were given a better framework

from which to work that encouraged their learning in CSO (Cook, 1997).

With success in the first course, and a strong link to the second course,

students were able to set an expectation for success in CS1 (Bay and

Daniel, 2003).

Finally, regardless of how well they fit cited studies and accepted

pedagogical practices, the results of this study must be qualified based on

the size of the sample and limitations on extensibility. Furthermore, the

number of external variables that might have had an impact on the study

results, despite attempts to isolate and account for them, makes it difficult

to state claims with certainty. However, it is evident that there was some

difference between the control and treatment groups and it is evident that

improvement was shown by the treatment group. When the consistency

of results between statistical, qualitative, and data mining analysis is

considered, it becomes difficult to ignore the fact that something positive

occurred in the course where the new curriculum was applied.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

180

5.9 Recommendations for Future Research
As is true for most field research and education research, this study

leaves the researcher with more questions than answers. The most

important issue is exactly what it was about the curriculum that led to an

improvement in learning. Was it a renewed focus on the entire CSO

course, or was it increased coverage of problem-solving and algorithm

development? Would similar modifications of content in a depth-first

environment lead to improvements in programming learning? In other

words, is this link independent of curriculum strategy? And, perhaps the

most interesting question, were certain kinds of students helped more by

these changes than others? And, if so, who were they and how can

others like them be reached?

If similar research were to be undertaken at this point in time, it would be

useful to utilize self-efficacy scales developed for programming and

computer science in order to have a tool that has been validity and

reliability tested for determining predispositions in learners. This would

allow more accurate accounting for variables that influence learning not

related to the change being measured. Similarly, known measures of

critical thinking or problem-solving ability, such as the Watson-Glaser tool

(Watson, Glaser, 1994), could be used to set baseline values for ability.

Also, the emphasis could be moved from timed measurements and tests

of skills to qualitative and quantitative studies of actual programs written

by subjects of the study. The evaluation methods outlined by Mengel

(1999) or Howatt (1994) might be useful in such an endeavor.

Future research in this area could also focus on the extensibility of the

research. Various approaches to expand the study to multiple schools

with a diverse set of populations could be helpful (Sandstrom and Daniels,

2000). A study following a cohort through their college career could

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence 181
Robert J Faux, ID 109462

assess how different introductory methods impact students as they travel

through their computing career at given four-year degree granting

institutions. Any future studies of this sort would require more direct

supervision and increased access to resources. There would also have to

be programs willing to execute changes to their introductory curriculum in

a controlled fashion in order for changes to be adequately isolated for

measurement.

It is obvious that this field of research has many open questions. It is

equally clear that post-secondary programs are still seeking out best

practices for the introductory sequence in computer science. A long-term

research agenda in this area (that paid increased attention to isolating

variables and confirming study validity and reliability) would be beneficial

to students and educators alike.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

182

6 Bibliography

ACM/IEEE-CS Joint Curriculum Task Force. "Computing Curricula 1991." :
Association For Computing Machinery, 1991.
ACM/IEEE-CS Joint Curriculum Task Force. "Computing Curricula 2001." :
Association for Computing Machinery, 2001.
Ackoff, R. The A rt o f Problerrj-solving. New York: John Wiley & Sons, 1987.
Adams, J. Conceptual Blockbusting. San Francisco, CA: W.H.Freeman,
1974.
Aharoni, D. "Cogito, Ergo Sum!: Cognitive Processes of Students Dealing
with Data Structures." Paper presented at the SIGCSE, Austin, TX, March
2000.
Akingbade, A, T Finley, D Jackson, P Patel, and S Rodger. "JAWAA: Easy
Web-Based Animation from CSO to Advanced CS Courses." Paper presented
at the SIGCSE 2003, Reno, NV, Feb 2003.
Albers, D.J., Anderson, R.D. & Loftsgaard, D.O. Undergraduate Programs in
the Mathematical and Computer Science: the 1985-86 Survey. Washington,
DC: Math Association of America, 1987.
Almstrum, V. "Investigating Student Difficulties with Mathematical Logic."
In Teaching and Learning Formal Methods, edited by N Dean and M Hinchey:
Academic Press, 1996.
Almstrum, V, O Hazzan, D Ginat, and J Clement. "Transfer to/from
Computing Science Education: The Case of Science Education Research."
Paper presented at the 8th Annual Conference on Innovations and
Technology in Computer Science Education, Reno, NV, Feb 19-23, 2003.
Almstrum, V, O Hazzan, D Ginat, and T Morley. "Import and Export to/from
Computing Science Education: The Case of Mathematics Education
Research." Paper presented at the 7th Annual Conference of Innovations
and Technology in Computer Science Education, Aahus, Denmark, June 24-
28, 2002.
Apple, D, and D Nelson. "Identification of Non-Success Factors in a Large
Introductory Computer Science Course and Constructive Interventions for
Increasing Student Success." Paper presented at the 32nd ASEE/IEEE
Frontiers in Education Conference, Boston, MA, Nov 6-9, 2002.
Applin, A. "Second Language Acquisition and CS1: Is * = = * * ?" Paper
presented at the SIGCSE 2001, Charlotte, NC, Feb 2001.
August, R, G Lopez, C Yokomoto, and W Buchanan. "Heuristic Beliefs About
Problem-solving in Technology Courses and Their Impact on Success on
Problem-solving Exams." Paper presented at the 32nd ASEE/IEEE Frontiers in
Education Conference, Boston, MA, Nov 6-9, 2002.
Ausubel, D. Educational Psychology: A Cognitive View. New York: Holt,
Rinehart and Winston, 1968.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

183

Bagert, D, W Marcy, and B Calloni. "A Successful Five-year Experiment with
a Breadth-first Introductory Course." SIGCSE Bulletin 27, no. 1 (1995): 116-
120.
Bailie, F. "Improving the Modularization Ability of Novice Programmers."
Paper presented at the 22nd SIGCSE Technical Symposium on Computer
Science Education 1991.
Bandura, A. Social Foundation o f Thought and Action. Englewood Cliffs, NJ:
Prentice Hall, 1986.
Barr, M, S Holden, D Phillips, and T Greening. "An Exploration of Novice
Programming Errors in an Object-Oriented Environment." SIGCSE Bulletin
31, no. 4 (1999): 42-46.
Bay, D, and H Daniel. "The Theory of Trying and Goal-Directed Behavior:
The Effect of Moving Up the Hierarchy of Goals." Psychology and Marketing
20, no. 8 (2003): 669-684.
Ben-Ari, M. "Constructivism in Computer Science Education." Paper
presented at the SIGCSE 1998, Mar 1998.
Ben-Ari, M. "Constructivism in Computer Science Education." Journal o f
Computers in Mathematics and Science Teaching 20, no. 1 (2001): 45-73.
Berlyne. "Curiosity and Education." In Learning and the Education Process,
edited by J Krumbolz, 67-89. Chicago: Rand McNally, 1965.
Black, A, and E Deci. "The Effects of Instructors' Autonomy Support and
Students' Autonomous Motivation on Learning Organic Chemistry: A Self-
Determination Theory Perspective." Science Education, no. 84 (2000): 740-
756.
Bloom, B.S., B.B. Mesia, and D.R. Krathwohl. Taxonomy of Educational
Objectives. 2 vols. Vol. 1 & 2. New York: David McKay, 1964.
Booth, S. "On Phenomenography, Learning and Teaching." Higher Education
Research and Development 16, no. 2 (1997): 135-158.
Boud, and Miller. "Synthesizing Traditions and Identifying Themes in
Learning from Experience." In Working with Experience: Animating Learning,
edited by Boud and Miller, 14-24. London: Routledge, 1996.
Bouvier, D. "Pilot Study: Living Flowcharts in an Introduction to
Programming Course." Paper presented at the SIGCSE 2003, Reno, NV, Feb
19-23, 2003.
Brookfield, Stephen D. The Skillful Teacher: On Technique, Trust, and
Responsiveness in the Classroom. 1st ed. San Francisco, CA: Jossey-Bass
Inc., Publishers, 1991.
Brookshear, J.G. Computer Science: An Overview. 6th ed. 1 vols. Reading,
MA: Addison-Wesley, 2000.
Brown, J, and G Dobbie. "Supporting and Evaluating Team Dynamics in
Group Projects." Paper presented at the 24th SIGCSE Technical Symposium
on Computer Science Education, Mar 1999.
Bruffee, Kenneth A. Collaborative Learning: Higher Education,
Interdependence, and the Authority o f Knowledge. Baltimore, MD: The
Johns Hopkins University Press, 1993.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

184

Bryant, R, and M Vardi. "2000-2001 Taulbee Survey." Computing Research
News, Mar 2002, 4-11.
BSU. University Data Book [website]. Bemidji State University, 2003 [cited
Oct 5, 2003]. Available from
http://www.bemidjistate.edu/lnstRes/databook/tableofcontent.html.
Buck, D, and D Stucki. "Design Early Considered Harmful: Graduated
Exposure to Complexity and Structure Based on Levels of Cognitive
Development." Paper presented at the 31st SIGCSE Technical Symposium
on Computer Science Education, Austin, TX, Mar, 2000.
Burt, C. "The Structure of the Mind." In Intelligence and Ability, edited by S.
Wiseman, 193-217. Baltimore, MD: Penguin Books, 1967.
Butcher, D, and W Muth. "Predicting Performance in an Introductory
Computer Science Course." Communications of the ACM, March, 1985,
263-268.
Byrne, P, and G Lyons. "The Effect of Student Attributes on Success in
Programming." Paper presented at the 6th Annual SIGCSE/SIGCUE
Conference on Innovation and Technology in Computer Science Education,
Caterbury, UK, Jun 2001.
Carbone, A., J. Hurst, I Mitchell, and D Gunstone. "Characteristics of
Programming Exercises that lead to Poor Learning Tendencies: Part II." Paper
presented at the 6th Annual SIGCSE/SIGCUE Conference on Innovation and
Technology in Computer Science Education, Canterbury, UK, June 2001.
Carrano, F.M. Data Abstraction and Problem-solving with C+ + : Walls and
Mirrors. 1 vols. Redwood City, CA: Benjamin/Cummings Publishing
Company, Inc., 1995.
Carrasquel, J. "Teaching CS1 On-line: the Good, the Bad and the Ugly."
Paper presented at the SIGCSE Technology Symposium on Computer
Science Education, 1999.
Carter, J. "Collaboration or Plagiarism: What Happens When Students Work
Together." Paper presented at the 4th Annual SIGCSE/SIGCUE Conference
on Innovation and Technology in Computer Science Education, Cracow,
Poland, Jun 1999.
Center, State Demographic. Census 2000 Data [web]. State Demographic
Center, 2003 [cited Oct 5, 2003]. Available from
http://www.demography.state.mn.us/.
Chamillard, A. "Using Learning Style Data in an Introductory Computer
Science Course." Paper presented at the 13th SIGCSE Technical Symposium
on Computer Science Education 1999.
Chamillard, A, and K Braun. "Evaluating Programming Ability in an
Introductory Computer Science Course." Paper presented at the 31st
SIGCSE Technical Symposium on Computer Science Education, Austin, TX,
Mar 2000.
Chang, K, B Chiao, S Chen, and R Hsiao. "A Programming Learning System
for Beginners - A Completion Strategy Approach." IEEE Transactions on
Education 43, no. 2 (2000): 211-220.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.bemidjistate.edu/lnstRes/databook/tableofcontent.html
http://www.demography.state.mn.us/

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

185

Christophel, D.M., and J. Gorham. "A Test-retest Analysis of Student
Motivation, Teacher Immediacy, and Perceived Sources of Motivation and
Demotivation in College Classes." Communication Education 44 (1995):
292-306.
Clancy, M, J Stasko, M Guzdial, S Fincher, and N Dale. "Models and Areas
for Computer Science Education Research." Computer Science Education
11, no. 4 (2001): 323-340.
Comer, J, and R Roggio. "Teaching a Java-based CS1 Course in an
Academically-Diverse Environment." Paper presented at the SIGCSE 2002,
Covington, KY, Mar 2002.
Concepcion, A.I., L.E. Cummins, E.J. Moran, and M.M. Do. "Algorithma 98:
An Algorithm Animation Project." Paper presented at the SIGCSE, New
Orleans, LA, March 1999.
Cook, C. "CSO: Computer Science Orientation Course." Paper presented at
the 28th SIGCSE Technical Symposium on Computer Science Education, Feb
1997.
Cook, D. "The Impact of the Hawthorne Effect in Experimental Design in
Educational Research." In US Office o f Education, N00726. Washington,
DC: US Office of Education, 1967.
Cook, T. D., and D. T. Campbell. Quasi-Experimentation: Design & Analysis
issues for Field Settings. Boston, MA: Houghton Mifflin Company, 1979.
Cook, T.D. , and C.S. Reichardt, eds. Qualitative and Quantitative Methods
in Evaluation Research. 1 vols. Beverly Hills, CA: Sage Publications, 1979.
Cowling, A.J. "Structuring the Recurring Concepts in the SE Curriculum."
Forum for Advancing Software engineering Education 9, no. 2 (1999): 6-14.
Davy, J, and T Jenkins. "Research-led Innovation in Teaching and Learning
Programming." Paper presented at the 4th Annual SIGCSE/SIGCUE
Conference on Innovation and Technology in Computer Science Education,
Cracow, Poland, Jun 1999.
Decker, R. "The Case for CSO." Computer Science Syllabus, Nov 1992
1992, 5-7.
Decker, R, and S Hirschfield. The Analytical Engine: An Introduction to
Computer Science Using HyperCard'. Wadsworth Publishing, 1990.
Deimel, L, and D Moffat. "A More Analytical Approach to Teaching the
Introductory Programming Course." Paper presented at the NECC 1982.
Dempster, F. "The Spacing Effect: A Case Study in the Failure to Apply the
Results of Psychological Research." American Psychologist 1988, 627-634.
Deutsch, M. "A Theory of Cooperation and Competition." Human Relations
2 (1949): 129-152.
Dewey, John. Experience and Education, reprinted ed. New York, NY:
MacMillan, 1963.
Dingle, A, and C Zander. "Assessing the Ripple Effect of CS1 Language
Choice." Journal o f Computing Sciences in Colleges 16, no. 2 (2001): 85-
94.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

186

Diseth, A. "Personality and Approaches to Learning as Predictors of
Academic Achievement." European Journal o f Personality, no. 17 (2002):
143-155.
Dressel, P.L. Handbook o f Academic Evaluation. 1 vols. San Francisco, CA:
Jossey-Bass, 1976.
Dunham, M.H. Data Mining: Introductory and Advanced Topics. Upper
Saddle River, NJ: Prentice Hall, 2003.
Eble, K.E. The Craft o f Teaching: A Guide to Mastering the Professor's Art.
2nd ed. San Francisco, CA: Jossey-Bass, 1990.
Edinger, M. "Sequence and Scope in the Curriculum." FT Magazine:
Education 117, no. 1 (1996): 58 + .
Ericson, B, and E Rogers. "Interactive Student Support for Introductory
Computer Science Courses." Paper presented at the ASEE/IEEE Frontiers in
Education Conference 1996.
Eyck, J.T., G Sampath, and R Goldstone. "Specification of an Algorithm
Design System." Paper presented at the ITiCSE, Dublin, Ireland, 1998.
Fekete, A, J Kay, J Kingston, and K Wimalaratne. "Supporting Reflection in
Introductory Computer Science." Paper presented at the 31st SIGCSE
Technical Symposium on Computer Science Education, Austin, TX, Mar
2000 .
Felleisen, M. "A Design-based Introductory Computer Science Course."
Paper presented at the 1997 ADEE/IEEE Frontiers in Education Conference
1997.
Filipovitch, A. IRB Brochure [website]. Minnesota State University at
Mankato, [cited August 23, 2002]. Available from
http://www2.mnsu.edu/graduate/facstaff/irbBrochure.shtml.
Fischbein, E. Intuition in Science and Mathematics. Dordrecht, Holland: D
Reidel Publishing Company, 1987.
Flaherty, T.J. Institutional Review Forms [website]. Minnesota State
University - Mankato, [cited August 23, 2002]. Available from
http://www2.mnsu.edu/graduate/facstaff/irbForms.shtml.
Frazer, K. "Comparing the Impact of Two Assignment-based Teaching
Methodologies on Student Programming." Journal o f Computer Science
Education (1998): 21-26.
Fujii, T. "The Role of Cognitive Conflict in Understanding Mathematics."
Paper presented at the PME-11 1987.
Gibbs, D. "The Effect of a Constructivist Learning Environment for Field-
Dependent/Independent Students on Achievement in Introductory Computer
Science." Paper presented at the 31st SIGCSE Technical Symposium on
Computer Science Education, Austin,TX, Mar 2000.
Ginat, D. "Misleading Intuition in Algorithmic Problem-solving." Paper
presented at the 32nd SIGCSE Technical Symposium on Computer Science
Education, Charlotte, NC, Feb 2001.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www2.mnsu.edu/graduate/facstaff/irbBrochure.shtml
http://www2.mnsu.edu/graduate/facstaff/irbForms.shtml

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

187

Ginat, D, O Astrachan, D Garcia, and J Bergin. "Colorful Illustrations of
Algorithmic Design Techniques and Problem-solving." Paper presented at the
SIGCSE, Covington, KY, Feb 27 - Mar 3, 2002.
Glass, R.L. "The Relationship Between Theory and Practice in Software
Engineering." Communications o f the ACM 39, no. 11 (1996): 11-13.
Goldwasser, M.H. "A Gimmick to Integrate Software Testing Throughout
the Curriculum." Paper presented at the SIGCSE, Covington, KY, Feb 27 -
Mar 3, 2002.
Goldweber, M, J Barr, and C Leska. "A New Perspective on Teaching
Computer Literacy." Paper presented at the 25th SIGCSE Technical
Symposium on Computer Science Education, Mar 1994.
Goold, A, and R Rimmer. "Factors Affecting Performance in First Year
Programming." ACM SIGCSE Bulletin 32 (2000): 39-43.
Gray, C, and M Frazier. "Introducing Computer Science After Programming."
Journal o f Computing Science in Colleges 18, no. 1 (2002): 65-76.
Gronlund, N.E. & Linn, R.L. Measurement and Evaluation in Teaching. 6th
ed. 1 vols. New York, NY: MacMillan Publishing, 1990.
Hagan, D, and S Markham. "Does it Help to Have Some Programming
Experience Before Beginning a Computer Degree Program?" Paper presented
at the 5th Annual SIGCSE/SIGCUE Conference on Innovation and
Technology in Computer Science Education, Helsinki, Finland, Jul 2000.
Hazzan, O. "Reducing Abstraction Level when Learning Abstract Algebra
Concepts." Educational Studies in Mathematics AO, no. 1 (1999): 71-90.
Heron, J. Group Facilitation: Theories and Models for Practice. London:
Kogan Page, 1989.
Heron, J. "Helping Whole People Learn." In Working with Experience:
Animating Learning, edited by Boud and Miller, 75-91. London: Routledge,
1996.
Heth, C, E Cornell, and T Flood. "Self-ratings of Sense of Direction and
Route Reversal Preformance." Applied Cognitive Psychology, no. 16 (2002):
309-324.
Hilburn, T. "Software Engineering Education: A Modest Proposal." IEEE
Software 14, no. 4 (1997): 44-48.
Hilburn, T. "A Top-Down Approach to Teaching an Introductory Computer
Science Course." Paper presented at the 24th SIGCSE Technical Symposium
on Computer Science Education 1993.
Holland, J.L. "Explorations of a Theory of Vocational Choice: VI. A
Longitudinal Study Using a Sample of Typical College Students." Journal o f
Applied Psychology 52 (1968): 1-37.
Holt, R, D Boehm-Davis, and A Schultz. "Mental Representation of Programs
for Student and Professional Programmers." In Empirical Studies of
Programmers: Second Workshop, edited by G Olson, S Sheppard and E
Soloway. Norwood, NJ: Ablex, 1987.
Howatt, J. "On Criteria for Grading Student Programs." SIGCSE Bulletin 3
(1994): 3-7.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

188

Howell, K. "The Culture of Undergraduate Computer Science Education: Its
Role in Promoting Equity Within the Discipline." Dissertation, Oregon State
University, 1996.
Hull, C.L. "The Basic Constitution of Aptitude." In Intelligence and Ability,
edited by S. Wiseman, 90-114. Baltimore, MD: Penguin Books, 1967.
Hunt, J.M. "Intelligence and Experience." In Intelligence and Ability, edited
by S. Wiseman, 314-356. Baltimore, MD: Penguin Books, 1967.
Isaacson, P, and T Scott. "A Comparison Between Python and TCL Solution
on Four Programs Assigned in CSO." Paper presented at the Consortium for
Computing Sciences in Colleges 2002.
Jarc, D.J., M.B. Feldman, and R.S. Heller. "Assessing the Benefits of
Interactive Prediction Using Web-based Algorithm Animation Courseware."
Paper presented at the SIGCSE, Austin, TX, March 2000.
Johnson, D, R Johnson, and K Smith. Active Learning: Cooperation in the
College Classroom. Edina, MN: Interaction Book Company, 1998.
Johnson, D.W., R.T. Johnson, and K.A. Smith. Cooperative Learning:
Increasing College Faculty Instructional Productivity. Washington, DC:
School of Education and Human Development, Washington University,
1991.
Kagan, S., and M Kagan. "The Structural Approach: Six Keys to Cooperative
Learning." In Cooperative Learning: Theory and Research, edited by S.
Sharan. New York: Praeger, 1990.
Kelley, D.H., and J Gorham. "Effects of Immediacy on Recall of
Information." Communication Education 37 (1988): 198-207.
Knowles, M, and H Knowles. Introduction to Group Dynamics. Revised ed.
Chicago, IL: Follett Publishing Company, 1972.
Koffman, E. "CS1 Using Java Language Features Gently." Paper presented
at the ITiCSE 1999, Innovation and Technology in Computer Science
Education, Jul 1999 Wolz, U.
Kozen, Dexter, and S Zweben. "1996-1997 CRA Taulbee Survey."
Computing Research News, Mar 1998, 4-8.
Krantz, S. Techniques of Problem-solving-. American Mathematical Society,
1991.
Larkin, J.H., J.l. Heller, and J.G. Greeno. "Instructional Implications of
Research on Problem-solving." In New Directions for Teaching and Learning:
Learning, Cognition and College Teaching, edited by W.J. McKeachie, 51-
65. San Francisco, CA: Jossey-Bass, 1980.
Leestma, S, and L Nyhoff. Pascal: Programming and Problem-solving. New
York: Macmillan Publishing Company, 1984.
Lethbridge, T. "A Survey of the Relevance of Comptuer Science and
Software Engineering Education." Paper presented at the 11th International
Conference on Software Engineering 1998.
Lewandoski, G, and Morehead. "Computer Science Through the Eyes of
Dead Monkeys." Paper presented at the SIGCSE 1998, Feb 1998.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

189

Long, T, B Weide, P Bucci, and M Sitaraman. "Client View First: An Exodus
from Implementation-based Teaching." Paper presented at the 13th SIGCSE
Technical Symposium on Computer Science Education 1999.
Marion, W. "CS1: What Should We Be Teaching?" SIGCSE Bulletin 31, no.
4 (1999): 35-38.
Markova, D. The Open Mind: Exploring the Six Patterns o f Natural
Intelligence: Conari, 1996.
Mayer, R. "The Psychology of How Novices Learn Programming."
Computing Surveys 1 (1981): 121-141.
McCauley, R, and U Jackson. "Teaching Software Engineering Early -
Experiences and Results." SIGCSE Bulletin, Inroads: Paving the Way
Towards Excellence in Computing Education 31, no. 2 (1999): 86-91.
McDowell, C, L Werner, H Bullock, and J Fernald. "The Effects of Pair-
Programming on Performance in an Introductory Programming Course."
Paper presented at the 33rd SIGCSE Technical Symposium on Computer
Science Education, Feb 2002.
Mengel, S, and V Yerramilli. "A Case Study of the Static Analysis of Novice
Student Programs." Paper presented at the 13th SIGCSE Technical
Symposium on Computer Science Education, March, 1999.
Miller, N., and D Boud. "Animating Learning from Experience." In Working
with Experience: Animating Learning, edited by D. Boud and N. Miller, 3-13.
London: Routledge, 1996.
Mitchell, W. "Another Look at CSO." Journal o f Computer Sciences in
Colleges 17, no. 1 (2001): 194-205.
Mitchell, W. Prelude to Programming. New York: Reston, 1984.
Morrison, M, and T Newman. "A Study of the Impact of Student
Background and Preparedness on Outcomes in CS1." Paper presented at the
32nd SIGCSE Technical Symposium on Computer Science Education 2001.
Moss, B. "Creating Integrated Curriculum: Books to Guide the Process."
Reading Teacher A, no. 48 (1995): 358 + .
Nagappan, N, L Williams, M Ferzli, E Wiebe, K Yang, C Miller, and S Balik.
"Improving the CS1 Experience with Pair Programming." Paper presented at
the 34th SIGCSE Technical Symposium on Computer Science Education, Feb
2003.
Naps, T, G Rossling, V Almstrum, W Dann, R Fleischer, C Hundhausen, A
Korhonen, L Malmi, M McNally, S Rodger, and J Valazquez-lturbide.
"Exploring the Role of Visualization and Engagement in Computer Science
Education, Report of the Working Group on Improving the Educational
Impact of Algorithm Visualization." Paper presented at the 7th Annual
Conference on Innovation and Technology in Computer Science Education
2002.
Newell, A., and H. Simon. Human Problem-solving. Englewood Cliffs, NJ:
Prentice-Hall, 1972.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

190

Odekirk, E, D Jones, and P Jensen. "Three Semesters of CSO using Java:
Assignments and Experiences." Paper presented at the ITiCSE 2000,
Innovation and Technology in Computer Science Education, Jul 2000.
Pattis, R. Karel the Robot: A Gentle Introduction to the A rt o f Programming.
New York: Wiley and Sons, 1981.
Perfetti, C. "Levels of Language and Levels of Process." In Levels of
Processing in Human Memory, edited by L Cermak and F Craik, 1 59-181.
Hillsdale, NJ: Erlbaum, 1979.
Pike, G. "The Relationship Between Self Reports of College Experiences and
Achievement Test Scores." Research in Higher Education 36, no. 1 (1995).
Polya, G. How to Solve it? Princeton, NJ: Princeton University Press, 1973.
Powers, D, and K Powers. "Constructivist Implications of Preconceptions in
Computing." Paper presented at the ISECON 2000, Philadelphia, PA, Nov
2000.
Powers, K. "Breadth-Also: A Rationale and Implementation." Paper
presented at the SIGCSE 2003, Reno, NV, Feb 2003.
Prince, M, and B Hoyt. "Helping Students Make the Transition from Novice
to Expert Problem-Solvers." Paper presented at the 32nd ASEE/IEEE
Frontiers in Education Conference, Boston, MA, Nov 6-9, 2002.
Proulx, V. "Programming Patterns and Design Patterns in the Introductory
Computer Science Course." Paper presented at the 31st SIGCSE Technical
Symposium on Computer Science Education, Austin, TX, Mar 2000.
Quade, A. "Development and Validation of a Computer Science Self-Efficacy
Scale for CSO Courses and the Group Analysis of CSO Student Self-
Efficacy." Paper presented at the Proceedings of the International
Conference on Information Technology: Computers and Communications
2003.
Ramalingam, V, and S Wiedenbeck. "Development and Validation of Scores
on a Computer Programming Self-Efficacy Scale and Group Analysis of
Novice Programmer Self-Efficacy." Journal o f Educational Computing
Research 19, no. 4 (1998): 367-381.
Reed, D. "Rethinking CSO with Javascript." Paper presented at the 32nd
SIGCSE Technical Symposium on Computer Science Education, Feb, 2001.
Roberge, J, and C Suriano. "Using Laboratories to Teach Software
Engineering Principles in the Introductory Computer Science Curriculum."
Paper presented at the 25th Annual SIGCSE Symposium on Computer
Science Education 1994.
Roiger, R.J., and M.W. Geatz. Data Mining: A Tutorial-Based Primer. Boston,
MA: Addison-Wesley, 2003.
Rosling, G., and T.L. Naps. "A Testbed for Pedagogical Requirements in
Algorithm Visualizations." Paper presented at the ITiCSE, Aarhus, Denmark,
June, 24-26,2002.
Rosso, A, and M Daniele. "Our Method to Teach Algorithmic Development."
SIGCSE Bulletin 32, no. 2 (2000): 49-52.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

191

Rountree, N, J Rountree, and A Robins. "Predictors of Success and Failure
in a CS1 Course." SIGCSE Bulletin 34, no. 4 (2002): 121-124.
Sandstrom, A, and M Daniels. "Time Studies as a Tool for (Computer
Science) Education Research." Paper presented at the the Australasian
Conference on Computing Education, Melbourne, Australia, December,
2000.
Schep, M, and N McNulty. "Use of Lego Mindstorm Kits in Introductory
Programming Classes: A Tutorial." Journal o f Computer Sciences in Colleges
18, no. 2 (2002): 323-327.
Schmuck, R, and P Schmuck. Group Processes in the Classroom. 6th ed.
Dubuque, IA: Wm C Brown, 1992.
Schneider, G.M., and J Gersting. An Invitation to Computer Science. 2nd ed.
1 vols. Pacific Grove, CA: Brooks/Cole, 1999.
Schoenfeld, A. Mathematical Problem-solving-. Academic Press, Inc, 1985.
Schumacher, J, D Welch, and D Raymond. "Teaching Introductory
Programming, Problem-solving and Information Technology with Robots at
West Point." Paper presented at the 31st ASEE/IEEE Frontiers in Education
Conference, Reno,NV, Oct 10-13, 2001.
Shin, N, D Jonassen, and S McGee. "Predictors of Well-Structured and Ill-
Structured Problem-solving in an Astronomy Simulation." Journal o f
Research in Science Teaching 40, no. 1 (2003): 6-33.
Snow, R.E., and P.L. Peterson. "Recognizing Differences in Student
Aptitude." In New Directions for Teaching and Learning: Learning Cognition
and College Teaching, edited by W.J. McKeachie, 1-23. San Francisco, CA:
Jossey-Bass, 1980.
Stein, M. "Mathematical Preparation as a Basis for Success." Paper
presented at the Consortium for Computing in Small Colleges 2002.
Thomas, L, M Ratcliffe, J Woodbury, and E Jarman. "Learning Styles and
Performance in the Introductory Programming Sequence." Paper presented
at the 33rd SIGCSE Technical Symposium on Computer Science Education,
Feb 2002.
Towhidnejad, M, and A Salimi. "Incorporating a Disciplined Software
Development Process in to Introductory Computer Science Programming
Courses: Initial Results." Paper presented at the ASEE/IEEE Frontiers in
Education Conference 1996.
Tucker, A. "Enrollments and Staffing in College Computer Science
Programs: A Growth Perpective fo r1996-2000." : Dickinson College, 1998.
Tucker, A, K Barker, A BErnat, R Cupper, C Kelemen, and R Ungar.
"Developing the Breadth-first Introductory Curriculum: Results of a Three
Year Experiment." Computer Science Education 8, no. 1 (1998): 27-55.
Tucker, A, and D Garnick. "A Breadth-first Introductory Curriculum in
Computer Science." Computer Science Education 3 (1991): 272-295.
Tucker, A, C Kelemen, and K Bruce. "Our Curriculum Has Become Math-
Phobic!" Paper presented at the 32nd SIGCSE Technical Symposium on
Computer Science Education, Feb 2001.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12/22/03 Project Demonstrating Excellence
Robert J Faux, ID 109462

192

Vandenberg, S, and M Wollowski. "Introducing Computer Science Using a
Breadth-first Approach and Functional Programming." Paper presented at the
31st SIGCSE Technical Symposium on Computer Science Education, Austin,
TX 2000.
Vardi, M, T Finin, and T Henderson. "2001-2002 Taulbee Survey."
Computing Research News, Mar 2003 2003, 6-13.
Wable, K. "JaCQ: An Interactive Appliation to Demonstrate Programming for
CSO." Jounal o f Computer Science in Colleges 15, no. 5 (2000): 331-332.
Walker, H, S Zweben, A Tucker, Jr Myers, J, and G Braught. "The Crisis in
Academic Hiring in Computer Science." Paper presented at the 13th SIGCSE
Technical Symposium on Computer Science Education, Mar 1999.
Watson, G, and E Glaser. Watson-G/aser Critical Thinking Appraisal Form S
Manual. San Antonio, TX: The Psychological Corporation, 1994.
Weiss, M.A. "Experiences Teaching Data Structures with Java." Paper
presented at the SIGCSE, California, 1997.
Wickelgreen, W. How to Solve Problems. San Francisco, CA: W.H.Freeman,
1974.
Wilson, B, and S Shrock. "Contributing to Success in an Introductory
Computer Science Course: A Study of Twelve Factors." SIGCSE Bulletin 33,
no. 1 (2001): 184-188.
Wolz, U, and E Koffman. "Language Considerations in a Goal-Centered
Approach to CS1 and 2: Java, C, or What?" Journal o f Computing in Small
Colleges 12 (1997): 12-20.
Woods, D. "An Evidence-based Strategy for Problem-solving." Journal o f
Engineering Education, Oct 2000, 443.
Yang, D, and S Wei. "A Project-Based Approach to Teaching Introductory
Computer Science." Paper presented at the ASEE/IEEE Frontiers in Education
Conference, San Juan, PR, Nov 10-13, 1999.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix I: New Curriculum Materials

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Introduction to Computer Science

Introduction to Problem Solving in Computer Science

1 o f 5

Computer Science is a discipline that requires advanced problem solving skills in every subject area, as
well as in most related tasks. Each o f us is capable o f solving problems in our own way, and thus a
section on problem solving may seem a bit ridiculous to some people. However, each of us can work to
improve our problem solving skills. Perhaps some o f the things discussed here, or in this class will
provide you with new tools for problem solving. Or, maybe it w ill confirm for you that you are using
approaches that are known to work for others in the field.

Why focus on problem solving?

1.Bridge a communications gap

Those who present you with a problem have a picture in their mind as to what they think is going on.
Often, their presentation of the problem fails to communicate to others what the problem is, what the
boundaries are and what would be considered a "good" solution. I f you are looking to become a
Computer Scientist, you should expect to do a good deal o f interpretation regarding the desires o f others
who are not familiar with terms o f computing and capabilities o f technology.

How would you respond to a person who asks you to "program it to make it do my work for me" or to
"help me do my work"?

2. Reduce the time it takes you to find and produce valid solutions

A little thought before you act usually saves you a good deal of time later as you attempt to fix or back
out of a bad solution. Failure to understand the problem fully can cause you to do a great deal o f work
that leads to results that weren't wanted in the first place. By the same token, it is possible that there are
simpler solutions that can be used if you take the time to weigh your options before acting.

I f you were given a large number of blocks (each a different size and shape) and told to stack them up to
make the tallest structure you can, you could just start grabbing blocks and stacking. But, what might be
a better approach?

3. Giving up is not an option

When we are faced with very difficult problems, it is tempting to give up and hope that someone else will
come along and fix them. However, the more problem solving tools you have, the more likely it is that
YOU can solve the problem. Problem solving becomes easier with experience. But, there are a number of
things you can do to help you have success more frequently.

4. The nature of the Computer Science beast

9/29/00 9:58 AM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2 o f 5

It is the nature o f most jobs and courses involving Computer Science that you will be consistently
presented with problems that you are expected to find solutions for. Improving your problem solving
skills can help you become more successful in the field.

5. Not just solutions - but GOOD solutions

A good problem solver doesn't just take the one solution that readily presents itself since it may not be a
good, efficient, working solution. I f you have ever complained about how someone else has done
something (a school, business, person, etc.) and pointed out why what they chose to do was wrong, you
have some idea o f what you should do when you look at your own solutions. Put yourself in the position
of evaluating your own solutions before using them.

6. Algorithms, diagramming and programming are all tools in the process of problem solving in
Computer Science.

Five steps to Problem Solving in Computer Science

1. Understand and isolate the problem
2. Brainstorm fo r ideas to solve the problem
3. Design a solution that might work
4. Test your solution to see if it w ill work
5. Assess whether the solution is good enough to do it

1. Understand and isolate the problem

I f you were given these tasks - what would you do?

• write an algorithm to determine if a sandwich tastes good
• write an algorithm to produce an accounting report
• write an algorithm to grow sweet com
• write an algorithm to judge a contest

Can you do any o f these problems successfully? A better question might be, "how do you know if you've
succeeded?" It is doubtful that you can answer this question since it is unlikely that you fully understand
any o f the problems. Thus, we have a communication issue. We need to be able to detect and identify the
parts o f the problem that give us vital information. By the same token, we need to detect what is missing.

A. clarify expectations

— good tasting sandwiches—

By what standard do we judge a sandwich as being tasty? Who's expectations are we meeting? What
tastes good to them? How do we indicate that a sandwich is tasty or not?

B. what's the problem domain? (isolate it by identifying inputs and outputs)

— accounting report—

Which o f the hundreds of accounting reports known to accountants are we supposed to produce? What

9/29/00 9:58 AM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3 o f 5

data w ill be used to create it? How often should we create it? What should the final product look like?

C. What are the limitations?

— grow sweet corn—

First, a problem domain question - where are we growing this com? If it is in Minnesota, we may be
limited to growing the com in months other than November-April. Certain soils and locations may not
allow com to grow. Knowing that some things are not options can lead you to more appropriate
solutions.

D, What are the rules? What is the system we work within?

— -judge contest—

Yes, we still don't have a problem domain (what is the contest about?) But, even if we do, we can't
successfully judge the contest until we understand the rules o f the contest. What is appropriate? What
constitutes success or failure in the contest?

So, if an accountant asks for reports, it is important to understand something about the accounting
system the accountant works with. I f a meteorologist asks to have a new system to predict the weather, it
is again important that some knowledge of the rules of meteorology and existing support systems be
available as a solution is being sought.

Consider this problem - a friend was working on a computer and is upset because it "isn't working"! How
do you work to isolate the problem?

• clarify what "isn't working" means. . .what was expected to happen and what happened instead
• isolate the inputs and actions that happened just before the problem
• have some knowledge o f how the software/hardware works and be aware of the limitations

2. Brainstorm possible solutions

Once you feel that you have some control over the actual identity of the problem, you can take some time
to think of possible solutions. For small problems, like many you will see as examples in the text or in
class, it may be difficult to see more than one solution. However, as problems become larger and more
complex, there often several valid solutions. Identifying more than one possibility allows you to determine
if one solution might be better than others.

Brainstorming can occur entirely in your head, or you may scribble ideas out on paper. You might have a
discussion with other people about the problem. Regardless of how it happens, give yourself the
opportunity to think of alternatives to solving a problem. Make yourself write options down just to get
used to the idea. Good problem solving techniques require some effort. By the same token, there may not
be a "best" solution, just several "reasonable" ones. Finding ways to select what appears to be the best
solution for a given situation make a difficult process easier.

• There are often many possible solutions - many may be quite reasonable
• The current situation may dictate which situation is best
• Make a quick written note of possible solutions to help you remember other possibilities if one

9/29/00 9:58 AM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4 o f 5

attempt fails.
• Don't put brainstorming off!
• Let yourself think of solutions that are common as well as solutions that include new approaches

and ideas
• Feel free to explore ideas and solutions that have been used in similar situations
• Not every solution is computer oriented in its entirety (even though this class focuses on that

portion)
• Two heads are often better than one. Discuss ideas with other people, explaining your ideas to

others often clarifies it for you.

Once you have alternatives, take some time to look at the pros and cons of each possible solution. Try to
determine which one is best for the current situation.

hm. I need to wrap a present, but have no wrapping paper. . . what should I do? I could wrap it in facial
tissues (unused). Maybe newspaper? Printouts from my last computing project? How about a paper sack?
I could go get some wrapping paper.

In some cases, the solution won't be possible because the resources for that solution are not available (no
printouts here). Or perhaps one solution requires more effort than the problem merits (tissue paper?).
Perhaps the solution won't have the desired effect? (my spouse may not like the look of newspaper or a
paper sack) Perhaps it will be worth the effort to get that wrapping paper!

3. Design a solution

Architects create models and draw up blueprints before a building is built. Electrical engineers create
models and test them before they send a circuit board design out for production. Cooks follow a recipe in
order to create various meals. Thus, it should be no surprise that taking some time to design a solution
before actually implementing the solution saves time in Computer Science.

Give yourself permission to take the time to think ahead:

• anticipate potential problems
• look for contingencies needed if one plan doesn't work
• locate exceptions and special situations
• find borders and limitations
• work to make the solution reusable
• work to make the solution robust
• try to make the solution flexible enough to allow for changes for future needs
• develop a model that can communicate the solution to others

The design of a solution can be created using diagrams, algorithms and other models. The main purposes
o f creating a design that can be viewed by others is to cummunicate the solution. In business, you rarely
work in a vacuum. Other programmers, designers, managers, etc. w ill need to understand what you
propose to do. You may need to return to the design well after you've forgotten the details. While all o f
this may seem like it doesn't apply to you now, consider that the ability to develop a design with
algorithms or diagrams will allow you to communicate your understanding or difficulties in understanding
to teachers, tutors and peers. Sometimes the most difficult thing is knowing what to ask when you need
help. Providing a diagram or algorithm of what you THINK is going on and is needed will provide others
a chance to see what your thinking is.

9/29/00 9:58 AM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4. Test the Solution

Once you have designed a solution you must ask yourself if it works. As a matter o f fact, you should ask
if it w ill work WELL. Take the time to trace through your design with some test information. Try more
than one scenario. Try to find information that tests the borders. Choose some information that isn't
supposed to work and be certain that the design handles it. Give your algorithm or diagram to another
person and see if they understand it, or walk through it with them. An excellent approach in a CS class is
to trade with a friend after you have both made an attempt at the algorithm. Critique each other's work
and learn from different perspectives. In business, it is critical that the design is understood by others and
that other opinions are solicited.

5. Assess whether you must go back or whether you can implement the solution

Is this solution really worth doing? Would another solution do better for this situation? Once you
determine if this solution will provide adequate answers, you must determine if the cost o f implementing
it is a cost you are willing to pay. This is quite similar to the end of the Brainstorming step. Once again,
you are attempting to determine if this is the best path to take. Use what was determined at that point and
add to it the new knowledge you have gained in designing and testing the solution. At this point, this step
should take relatively little effort since most o f the work and data gathering is done!

Problem Solving Example

Problem Solving Exercises

Return to Main Page

rfaux 8/27/00

5 o f 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9/29/00 9:58 AM

www.manaraa.com

Introduction to Computer Science

Introduction to Problem Solving in Computer Science

Examples

1 o f 3

Example 1: The French Ambassador

The French ambassador gives a reception. H alf o f his guests are foreigners, whose official language is not
French. Each guest says "bonjour" to the ambassador. And, to be polite, each guest says hello to every
other guest in the official language o f the person he is talking to The French ambassador answers "Soyez
le bienvenu" to every guest. In all, 78 "bonjours" are said. How many guests are there? (1)

1. Identify and isolate the problem.

Given a problem in a test, or fo r a program or an exercise, it is important to first identify what is
important in the question. What is important in this question?

FOCUS: How M ANY guests? (doesn't include ambassador)

• 78 'bonjours' are said.... so, when do they say 'bonjour'?
• Everyone says 'bonjour' to the ambassador
• The French ambassador never says 'bonjour' - how do I know that?
• H alf the guests are French speakers (because half are NOT)
• Each of the French guests are greeted with 'bonjour' - how did I determine this?

2. Brainstorm - how might I solve this?

Think o f some ways that you could work to solve the problem. Often, this step, fo r this type ofprogram
can be very short. However, a few moments here, can save lots of time later/

• Pick numbers and see if they work
• Develop an equation and solve for an answer
• Come up with a logical sequence/algorithm that leads to the solution

Which one seems to be easiest from your perspective?

• It could take a very long time trying numbers before I find the right one, but I don't have to think
much in picking a number.

• I f the equation is correct, I'll get right to the answer. But, it is difficult to find an
equation.. .unless....

• an algorithm may be a combination of educated guesses and equations. But, it may be difficult to
see a step by step solution!

9/29/00 9:58 AM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2 o f 3

3. Design a way to get the solution

Lets try the third method. We’ll try to combine lope and some educated guesses!

1. Assume a variable for the number o f French guests (x)
2. Figure out how many bonjours' are said to one o f the French guests
3. Figure out how many bonjours1 are said to all French guests
4. Figure out how many o f the bonjours' were said to the ambassador
5. Add up all o f the bonjours in 3 and 4 and it should be 78 bonjours'
6. solve the equation that results for the number o f guests.

4. Try it out!

There were 78 bonjours and x guests.

Every French guest was greeted by a bonjour* from every other guest. That means a French guest was
greeted by 2x -1 bonjours' (they won't greet themselves!)

50...each of them were greeted by bonjour' 2x-l times. So the total number o f bonjours to French guests
is (x)(2x -l)

the ambassador was greeted with bonjour' by every guest. . . which means he heard bonjour' 2x times
(because there are 2x guests!).

50... (x)(2x -l) + 2x = 78

solving, we get 6 for x. So there were 6 French guests and 6 non-French guests.

12 total!

Note: Problem solving often entails practice and experience. Once you see cm approach to solve a
certain problem, you can look to use that approach again. However, many problems don't f it patterns
we recognize. So, the more problems you work to solve, the more patterns you have to work from in your
own experience!

Example 2: What's missing?

Problem: Water the plants before they die.

This seems to be a simple problem to solve on the surface. But, what information do you need in order
to actually be successful at it? After all, you could continuously water the plants, which would certainly
meet the requirements of the problem as stated!

In Computer Science, we are often required to learn more about the subject and to extract information
from those who are requesting the service. In this case, you might want to know some o f the following:

• What types of plants are they?
• How much water do they need when I water them?

9/29/00 9:58 AM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• How often should I water them to keep them from dying?

But, perhaps, even the problem statement isn't entirely adequate. Maybe what we really want is to
encourage the plants to live and grow! In that case, perhaps we need to know more beyond how much
we should water, such as:

• What kind of light do these plants need?
• What do I do if they are infested by bugs?
• Should I trim o ff dead leaves?
• Should I pour the coffee sludge from my cup into the potted plant?

Problem Solving Notes

Problem Solving Exercises

Return to Main Page

rfaux 8/31/00

3 o f 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9/29/00 9:58 AM

www.manaraa.com

Introduction to Computer Science

Introduction to Problem Solving in Computer Science

Exercises

1 o f 1

1. For each of the following problem statements, identify things you need to know to solve the
problem, but aren't given in the problem statement

a. Compute charges for the telephone company's bill.

b. Invest money in a stock that will increase significantly in value.

c. Determine the average test scores for students in a class.

d. Find the smallest number in a set o f numbers.

e. Compute the take home pay for employees in a business.

2. For the following problem, identify the parts of the problem that are critical to solving the
problem. After you have done that, is there something more that you must know in order to solve
the problem? In other words, must you make an assumption or get a clarification in order to do
this?(hint: yes there is! What is it?)

Timothy goes to a fountain which delivers an unlimited amount o f water. He brings two empty
containers, one of 7 liters, the other o f 11 liters. How many operations does he need to fill one o f the
containers with exactly 6 liters of water?

3. Go through the steps of problem solving and attempt to develop an algorithm to find the total,
average and largest number in a given list of 25 numbers.

Problem Solving Notes

Problem Solving Examples

Return to Main Page

rfaux 8/31/00

9/29/00 9:58 AM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Introduction to Computer Science

Flow Charts

L Why Flow Charting?

Often the best way to visualize a problem or a possible solution is to draw pictures or representative
models o f the things we are working with. Pictures can provide us with a different perspective and help
us to see relationships between objects and actions. Pictures often provide us with a more complete idea
of the situation than a series o f short word prhases can. However, pictures combined with text provide an
extremely powerful tool for communication and problem solving.

Some individuals find that they can develop algorithms more quickly if they utilize a diagramming
technique, such as flow charting to represent their algorithm. In many cases, people are able to work
through an algorithm utilizing a technique such as flow charts and then convert the flow chart into
pseudocode. In other cases, a person works best with pseudocode.

In either case, good pseudocode and good flow charts are two roughly equivalent tools for representing
solutions. Pseudocode is quite often capable o f handling higher amounts o f detail and (obviously) greater
text content. Flow charts are usually a better tool when an algorithm needs to be shared with other
persons since it requires less effort to understand.

II. Control Structures and Flow Charting

Flow charts are ju st one way o f using diagrams to illustrate problems and possible
solutions. This set o f symbols is the most frequently used set However, there are other
symbol sets used fo r the same diagramming purpose Understanding o f one style o f flow
charting makes it easier to understand any other style o f flowcharting.

Flow Chart Symbols

square - process or module or action

diamond - decision / check a condition and branch to proper
process (square) or another decision (diamond)

circle - indicates that the diagram continues on another page (label

1 of5 9/29/00 9:56 AM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2 o f 5

the symbol to show where to go)

lines - indicate the flow o f the system from one process or decision
to another

Sequential Structure

A series o f processes that follow in order.

Rinse

Apply Shampoi

W et Hair

Selection/Condition Structure

A condition exists that may change the order or types o f processes to be
followed. Often referred to as an IF/THEN situation.

For example, IF the light is red THEN I w ill stop OTHERWISE I w ill go.

NoY es

GoStop

Drive Car

9/29/00 9:56 AM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3 o f 5

Loop Structures

Often, we might wish to perform the same set o f processes a number of times,
we can perform a loop and do the same set o f actions over and over until a
STOPPING condition occurs.

Failure to provide a STOP condition will cause the process to go into an
IN FIN ITE LOOP

Print "MOOSE"

An example o f a FOR LOOP could be to display the word 'MOOSE' on the
screen 7 times.

YesNo

Quit

An example o f a W HILE LOOP could be to display the word MOOSE' and
then ask the user if they'd like to see it again. I f they say "NO" quit displaying
moose.

9/29/00 9:56 AM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4 o f 5

Yes

QuS

Get response

Print "Want to see
a moose?"

III. Using Flow Charting to Solve Problems

Flow charting provides some o f the same tools that pseudocode brings for algorithm development. The
main difference is that pictures convey a great deal o f the solution. For many people, a diagram can
communicate a possible solution far better than a series of words. For others, drawing a quick picture
helps a person to brainstorm far more than a set o f pseudocode.

Hints for using flow charts:

• Don't worry about neatness when you are brainstorming - just get your ideas down on paper.
• Use pencil so you can erase and try new ideas.
• Take the time to walk through your algorithm to see if it actually does everything you think it

should do
• Don't assume that something 'magically' happens. With computers you have to tell it everything -

thus your flow chart should have all o f the steps!
• Expect your first draft to have problems!
• Consider finding a problem with your algorithm a success, not a failure (a failure is when a person

using your code finds a problem you missed! So YOU should work to find errors)

Flow Chart Example

Flow Chart Exercises

Return to Main Page

9/29/00 9:56 AM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Introduction to Computer Science

Flow Chart Example

The following example is an attempt to provide an algorithm for putting on a shirt. Consider the
possibility of attempting to tell a robot (which must have everything given to it) how to do this:

-Yes-

No

No

■No

Yes-

-Ye&

-No

Y es

Take One Arm Out
ofSbew

Turn Shirt Right
Side Out

Pick Up Shirt

PitAnn k Skew

1 o f2 9/29/00 10:37 AM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Identifying structures:

• Sequential structures are indicated by an arrow showing direction but no decision (yes/no)
• Conditional Structures are shown by diamonds
• Loop structures can be found in multiple places - always with a conditional structure to allow

escape from the loop

Take a few moments and identify every loop in the flow chart.

Testing the Algorithm:

It may seem a little odd to have to ask if ones arms are in separate sleeves. However, consider the robot
and its lack of knowledge pertaining to shirts. We might have to go so far as to define shirt, sleeve, arm,
button, buttonhold (to name a few). As humans, we tend to have experience in recognizing these items, so
the questions are fairly simple to us.

Are there ways that this algorithm can fail?

• Both arms could be in different sleeves, but the WRONG sleeve (left/right)

Do you see other potential problems?

Flow Chart Notes

Flow Chart Exercises

Return to Main Page

rfaux 9/15/00

2 o f2 9/29/00 10:37 AM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Introduction to Computer Science

Flow Chart Exercises

• For each o f the problems below, develop a flow chart and a segment o f pseudocode.
• Alternate between these two methods by doing the flow chart first on one problem, then write the

pseudocode for that problem. For the next problem, start with a pseudocode solution, then go to
the flow chart.

• Once you have completed a couple of problems, take time to have another learner review your
work while you review theirs.

• Remember - small details are important here!

1. Count to 100
2. Count to 100 by 2's
3. Count to 100 by 3's
4. Add the numbers from 1 to 100
5. Add up 10 numbers that are given to you - that is, you don't know what they are until someone

gives them to you. ..
6. Find the average of 10 numbers given to you
7. Find the average, high number, low number, sum of those 10 numbers
8. Display three numbers in order from smallest to largest (the numbers are given to you)
9. Display three words in order (the words are given to you)

10. Display 10 numbers in order
11. Display 10 words in order
12. Find the batting average of your favorite baseball/softball player
13. Display 10 baseball/softball players in order o f their batting average (high to low)
14. Find the area of a rectangle (two sides are given to you)
15. Find the area o f a triangle
16. Find the area of a circle
17. Find the area of a snowman (3 circles - we'll stay 2 dimensional here!)
18. Find the area o f a house (a rectangle and a triangle)
19. Find the area of a rectangle with a triangular hole in it
20. Modify your area solutions to check for values given to you that are less than zero and ask for a

new number
21. Ask a person for a number between 1 and 100, ask again if they give you a number outside that

range
22. Swap the contents of two glasses of water - what w ill you need to do?
23. Calculate a student's grade point average - A = 4, B=3, C=2 and D = 1
24. Find the factorial o f a set of numbers (multiply from 1 to n)
25. Find the sum of a set o f numbers (add from 1 to n)

1 o f2 9/29/00 9:58 AM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Flow Chart Notes

Flow Chart Examples

Return to Main Page

rfaux 9/14/00

2 o f 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9/29/00 9:58 AM

www.manaraa.com

iUlXUUUCUOlK IV i / O i u p u i c i OCICHVC* I C S U l lg S U g V U U U lia

Introduction to Computer Science

Testing Algorithms

1. Successful Testing

Some axioms fo r testing:

1. A successful test is one that finds a problem.
2. The most successful tests are those that find problems early in the process.
3. You cant catch them all, but you sure can try!
4. Test and test again.

1.1 A successful test is one that finds a problem

This concept is a difficult one to accept. After all, it is our goal to find a solution that works, not
one that breaks! So, it is normal when people get upset when a test shows us that a solution didn't
work. The natural result is to think that the test failed. In reality, the test succeeded in catching a
problem with the solution. The test was successful in preventing you from submitting a solution to
your instructor, to your boss, or to your customers with a flaw.

Consider this: How many times have you used a computer or piece of software and gotten upset
when the computer or software crashes on you? Who do you blame? Who should you blame? As a
consumer, wouldn't you like to think that those creating the software are taking the time to
thoroughly test their systems before putting them into action? If that's the case, perhaps you should
consider that you are looking to be a part o f the software development process and that you will be
one of those responsible for either successfully ferreting out problems before they reach the
customer OR for allowing them to reach the customer!

1.2 The most successful tests are those that find problems early

In business, the cost o f fixing problems goes up as you progress through the process o f developing
software.

Nearly all software development models agree that there are three major phases:

1. Definition
2. Development
3. Maintenance

As we progress through these phases, the cost o f change increases greatly.

• Development -1 .5 to 6 times as much
• Maintenance - 60 to 100 times as much

1 Of 5 9/29/00 9:55 AM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2 o f 5

But where do these costs come from? Or are they just numbers intended to try to scare us
into doing something we don't want to do in the first place?

Project this onto doing homework for college courses. Assume you are working on a paper
for a writing class. You sit down at the computer, fire up the word processer and begin
typing. You type in four pages of material. You print it. You proof read it. You edit it. You
bring it in to hand to the teacher. The teacher informs you when you get it back that you
wrote on an incorrect topic and in an incorrect format! The cost is now either a very bad
grade or a lot o f wasted time as you redo the entire project. Wouldn't it have cost you less to
have reviewed the assignment and asked questions and clarified the project earlier? Perhaps
if you'd written an outline and then discussed it with another student, or an instructor, or a
tutor, you could have caught this well before this point. Wouldn't that have cost you less in
the long run? This process is even more important when one develops software.

Take some time to think o f reasons why the cost is so much greater in software development
in later phases o f development. Think in terms of time, money, effort and other resources for
the business.

1.3 You can't catch them all, but you can sure try!

Even things that seem very simple can become very complex when you attempt to implement the
idea with a computer. Lots can go wrong. For example, consider a program that is created to
calculate and select appropriate change in terms o f hard currency denominations ($5, $1, quarters,
etc). Seems simple enough when you do it yourself, but try telling a computer how to do it with a
piece of software! Check out the exercise linked at the bottom of this page.

The idea here is that you can not expect to catch every problem. Programs are complex enough by
themselves. But, when you add to it the possibility that it may react negatively to another program,
such as certain operating systems, it is impossible to catch them all. However, we must remember
that the customer is relying on the software product. It is necessary to be able to isolate and
remove as many problems as possible. Similarly, it is necessary to continue to watch for errors as
things change! (see the next point!)

A final point, we can't delay software products forever! They need to be released for use at some
point in time. This is where software developers need to consider the level o f reliability necessary
for the product - which is considered in the test plan for that product. For example, if the product
works in a life/death situation, it had better be extremely reliable.

1.4 Test and test again

Every time the solution design is modified, there is a chance that something that worked before will
break. Do not assume that your new modifications have no effect on things that were fine the last
time you looked. Test each time you make a change. Remember that once you perform a certain
test, it is easier to perform a second time since you already know how to set the test and make it
go!

2. Vocabulary in Testing

9/29/00 9.55 AM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

U IU U U U IH K H I IU V /U U ipU tC ft OC1C11CC- I C S U llg / \ i g U I 1UIIUS

3 Of 5

Black Box Tests - A test where the internal workings are not known. Something is put in and a result
(correct or incorrect) comes out.

White Box Tests - A test where the internal workings are clearly seen. Something is put in and we can
watch the result be generated.

Integration Tests - Making sure a part o f a product works with other parts of a product (or with other
products).

Boundary Testing - Providing test inputs that check values that are on one side or the other o f getting
different results.

Walkthrough - Any method o f reviewing a solution for validity. Tracing is one type of walkthrough.
Often, walkthroughs are done with other team members.

Tracing - taking an algorithm and stepping throught he solution with input to see how it formulates a
result - a white box type o f test!

Test Plan - A strategy for efficiently and effectively testing an algorithm, solution, program or product.

Test Suite - a series of tests available to run through an algorithm, program or product.

Requirements Comparison - A test plan should include testing that reflects the requirements for the
algorithm. In other words, the system should do what it is required to do. No more, no less.

Exhaustive Testing - making sure every possible path through the algorithm is checked for correctness.

3. A Basic Testing Strategy

As you progress through the CS program you will find that you w ill learn and use more strategies
in testing. However, a good starting set o f methods will help you get through this class and the
early programming courses. The following is a strategy that is effective for early algorithm
development and program coding.

• Trace your algorithm with various inputs to make sure it does what the requirements
(requirements comparison)tell you it should do. When you trace, you should keep the next two in
mind.

• Make sure you exercise every line o f the algorithm or every box/diamond o f the flow chart
(exhaustive testing) by selecting different tests that go to each part, (note: if you can't GET TO a
part o f your algorithm - maybe it is not needed - or you made a mistake in design)

• Test boundaries, they often show you where you MISSED something in your design - so you
might have to add to the solution, (example - test negative numbers, zero, etc.)

• I f your algorithm is large, you should keep track o f the tests you run and their results. The bigger
the algorithm, the more likely it is that you should develop a plan fo r your testing.

4. Avoiding Pitfalls, Burnout and the Occassional Dragon

Test smart and avoid the 1)10116 force1 mentality. We may admire someone who has the desire and
ability to work themselves to exhaustion as they test every possible input. One example of testing

9/29/00 9:55 AM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

IUMUUUVUUII tU W111J/UIV1 L>VIV1IW~ iVOUllgi ÛVllUllHU

smart:

• The problem is to print grades for a test. As follows

- - t
nA .(90 and up

C T O I

D 60 - 6977 ~ J
F ’less than 60 J

It makes sense to test data for each grade. It also makes sense to test boundary input, such as 90
and 89. But, why would you test every number from 80 to 89? Is there something in the solution
that w ill be different for 85 and 86? As an exercise, try to develop an algorithm for this and test it

Test consistently and intelligently. Don't put it off. Instead, do a little bit as you develop the design.
As you practice this, you will find that testing becomes easier and that you get better at selecting
tests and at implementing them very quickly.

5. Consequences of Failed or Inadequate Testing

As mentioned before, the cost increases when a problem is discovered late in the development
cycle. Part o f this has to do with the increased difficulty in altering the solution to handle the
problem. Simply remember that band-aids do not stick as well as your own skin does to the rest of
your body. Something that is designed into a solution from the beginning usually is more seamless
and less likely to fall apart than something that is done to modify an existing solution just to 'get it
to work.'

Once software is created, it is subjected to an aging process known as the bathtub curve. Early in
its life, the software is prone to breaking down as errors are discovered and removed. It then has a
period of relative stability until changing requirements cause it to begin breaking more frequently.
The more fixes that occur later in life for the software, the more the software 'ages' and becomes
more prone to break. Catching errors in design reduces the number o f weak points in the actual
software! Thus, a longer life is possible for the product you design!

Some examples of real world consequences when testing was not sufficient.

• online auctions - database query problems cause auction lots to disappear during the last hour of
the auction's activity. The last hour is frequently when the most bids are made on items. The result
- sellers (who pay the online auction company to list items) receive significantly lower dollar
amounts for their items.

• military - anti-missile weapons trained to site on missile 'flame trails' notice the Hale-Bop comet
and target it. I f they hadn't been stopped, what would have been the result?

• medical - radiation treatment machine overdoses patients. The result, bums, infections, severe pain
and, in some cases, death.

• manufacturing - a chip insertion machine crushing microchips by attempting to insert them in the
wrong position on a circuit board. The result, an entire set of chip production for a new product is
mined.

4 o f 5 9/29/00 9:55 AM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1 o f 4

Introduction to Computer Science

Testing Algorithms - Examples

Example 1: Division

Algorithm:

1. Input A from Keyboard
2. Input B from Keyboard
3. Set C to A divided by B
4. Display C on screen

Trace code with sample input:
1. Input A from Keyboard
2. Input B from Keyboard
3. Set C to A divided by B
4. Display C on screen

A is 8
B is 4
C is 2
2 is displayed

No problems found with a general test.

Try B as a zero!

Trace code with simple input:

1. Input A from Keyboard
2. Input B from Keyboard
3. Set C to A divided by B
4. Display C on screen

A is 8
B is 0
C is ???????
9????

We can't divide by zero, so we should prevent a zero from being entered for B. This was a successful test
since we found a problem.

Modify Algorithm:

1. Input A from Keyboard
2. Input B from Keyboard
3. If B = 0 Go to 2
4. Set C to A divided by B
5. Display C on screen

9/29/00 10:36 AM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2 o f 4

1. Input A from Keyboard A is 8
2. Input B from Keyboard B is 0
3. If B=0 go to 2 true
2. Input B from Keyboard B is 2
3. I f B=0 go to 2 false
4. Set C to A divided by B C is 4
5. Display C on screen 4 is displayed

Another consideration with this example. What would the computer user see on the screen with this
algorithm? Anything? the only thing with this algorithm displayed on the screen is the number 4. How do
they know they are supposed to enter numbers via the keyboard? Often, in early design, such things are
not a concern, but they should be considered for the final product.

Second modification:

1. Display" Enter two numbers to be divided" on screen
2. Input A from Keyboard
3. Input B from Keyboard
4. I f B = 0
4.1 Display "We can't divide by 0, enter a new second number"
4.2 Go back to 3
5. Set C to A divided by B
6. Display "Your Answer is"
7. Display C on screen

Example 2: Get a number between 0 and 100

Get number
from keyboard

Display "Enter a
number from 0

to 100"

Display
number

Test: What if number entered is -1 ? What happens? Use a pen or pencil and draw in values to help
yourself trace!

Get number
from keyboard
(number is -1}

Display "Enter a
number from 0

to 100"

Display
number

Display "Enter a
number from 0

to 100"

Get number Display
from keyboard number

-N o -

9/29/00 10:36 AM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Test: Does -1 work now?
Test: How about 101?

3 o f 4

Display “Enter a
number from 0

to 100“

Get number
from keyboard
1s t tim e : numb-

ii-l
2nd time: number

is 141

Yes Display
number

191 dap fayed

No-

Get number
from keyboard

Display “Enter a
number from 0

to 100"

Display
number

Test: Now try -1. Remember, changes can cause things to break!

Tracing is left to you this time!

-1 fails to work. The current condition w ill allow ANY number to succeed because any number entered
w ill be either bigger than 0 OR smaller than 100! Maybe we should change things a little?

Display "Enter a
number from 0

to 100*

Get number
from keyboard

i

-----No------

-Yes-* Display
number

Test: Does -1 work now?
Test: How about 101?
Test: What if I hit the letter "a" ?

9/29/00 10:36 AM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Display "Enter a
number fromO

to 100"
-* < Is inpat nomericp— Ye&~*

■No

No

-Yes— p

Here is a process that w ill allow us to handle a non-number entry! Don’t assume that clients who w ill use
your solutions w ill avoid these errors!

Testing Notes

Testing Exercises

Return to Main Page

rfaux 9/25/00

4 o f 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9/29/00 10:36 AM

www.manaraa.com

introduction to computer science- testing Algorithms txercises llttp.//w w vv.uiiwui.iivi/ 'I tauA/ uiuuva/ U$CACrClS6.0Iin

1 o f 3

Introduction to Computer Science

Testing Algorithms - Exercises

Exercise 1: The change making machine

Assume that you have to create an algorithm that w ill give change if you are given the inputs:

• Cost of item
• Amount given for payment
• number o f bills and change in machine

Assume we won't have amounts over $10.

Assume we start with the following:

$10 bills 0 \
$5 bills 2 j
$1 bills 5 ' t
25 ct coins 10 *
10 ct coins 10 i
5 ct coins 10 *

Start with this algorithm - then try some of the tests given below and modify the algorithm if you feel it
needs to be modified after you try the test.

1. Get amount due
2. Get amount paid
3. Change = amount paid - amount due
4. While Change > 0
4.1 if Change > 5
4.1.1 Give a $5 bill in change to customer
4.1.2 Subtract 5 from Change
4.1.3 go back to 4
4 .2 if Change >1
4.2.1 Give a $1 bill in change to customer
4.2.2 Subtract 1 from Change
4.2.3 go back to 4
4.3 if Change > .25
4.3.1 Give a quarter in change to customer
4.3.2 Subtract .25 from Change
4.3.3 go back to 4

9/29/00 9:59 AM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

introduction to computer science- lesuiig /\iguuumis dacivim 'a

4.4 if Change > .10
4.4.1 Give a dime in change to customer
4.4.2 Subtract .10 from Change
4.4.3 go back to 4
4.5 if Change > .05
4.5.1 Give a nickel in change to customer
4.5.2 Subtract .05 from Change
4.5.3 go back to 4
5. Say thank you.

This algorithm looks pretty good at first glance. But, there are problems. You may see some now if you
look. But, try some o f these tests and see what you find.

A. Try an amount due that is larger than the amount paid.

B. Try an amount due that is larger than $10....can we do that? Does our algorithm prevent it?

C. Try a negative amount paid.

D. Try an amount due o f $0

E. What happens when a second customer comes in? Are the amounts of bills/coins accurate now?

F. What happens if you run out of $5 bills?

Can you think o f other successful tests that find problems with this algorithm?

Exercise 2: Grade determination

It makes sense to test data for each grade. It also makes sense to test boundary input, such as 90
and 89. But, why would you test every number from 80 to 89? Is there something in the solution
that w ill be different for 85 and 86? As an exercise, try to develop an algorithm fo r this and test
it. As a further exercise, develop the algorithm first with other flow charts or pseudocode.
Then, rewrite it in the other form at

• The problem is to print grades for a test. As follows

B 80 - 89
C 70 - 79
D 60 - 69
F less than 60

A 90 and up
B 80 - 89

Testing Notes

Testing Examples

2 o f 3 9/29/00 9:59 AM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Introduction to Computer Science

1 of7

Team Development

L Teams in Computing

Software development teams take many forms in the workplace. Some o f these incarnations work well,
and others do not work at all. The following roles are found frequently in IT environments, though the
roles may not be labeled or recognized by the company or the members o f the team.

• Project Leader - this individual is primarily responsible for the overall vision and direction of the
project. Often the project leader is also an analyst (and has something to do with high level design)
and may be the client group contact. Some businesses equate the project leader with an
administrative position and is filled by a manager or supervisor. Others believe that there should be
a separate project leader from the administrative leader.

• Lieutenant(s) - this individual or individuals frequently consult with the project leader on the
overall strategy for the project's development. I f the project is large enough, each lieutenant w ill be
responsible for a portion of the required duties or functions. Thus, they become project leaders for
smaller portions o f the overall project. These persons often serve as analysts, documentarians,
client group contacts and programmers.

• Documentation - this person is ultimately responsible for tracking all requirements, design,
decision making documents. They do not necessarily create all such documents, however, they w ill
serve as the librarian in order to keep track o f current versions o f materials. This person often
serves other duties in the group as well (except for very large projects).

• Client Group Contact - the person primarily responsible for answering questions raised by the
clients and discussing requirement and design options with them. This person should have excellent
communication skills and should be able to learn the skills and information necessary to perform
the tasks of the client group.

• Analysts - persons responsible for analysis and design of the product. Can include the process from
requirements brainstorming to detailed design. Often, companies employ persons as
programmer/analysts. Thus, they switch to coding once the design is completed.

• Programmers - in larger projects, these persons are responsible for converting design into working
code. These people are more concerned with dealing with syntax and system issues and will often
refer to the analysts if design issues arise.

• Test Engineers - some companies use a subset of the client group to test the product. In other
cases, specially trained individuals design and implement test suites for the product. These persons
are often involved starting at the design stage. Often work in conjunction with analysts and
programmers.

• Specialists - other individuals may be needed for the project. Client group experts, Data Base
Administrators (DBA), technical support personnel, and others may be called upon to be a part o f
such a team.

What determines the population o f a project team?

9/29/00 9:55 AM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2 o f 7

The ideal situation is to let the complexity o f the project dictate the population and distribution of the
team members. A small, simple project may consist of a single programmer/analyst who reports to a
project manager. A very large, complex project may have a directing project leader with a number of
lieutenants who serve practically as project leaders for each component of the project.

The reality is that the existence or lack of managerial and organizational support for teams will determine
the composition of the teams themselves. In some cases, teams are simply organizational units that are
expected to work on multiple projects at one time. No other organization is enforced or encouraged.

Factors that lead to success or failure in these teams:

6- project length of 6-9 months is usually considered to be optimal for larger development. Longer
projects lead to development problems.

5- Too many members in the team leads to too little progress because of overlapping tasks and team
conflict... .too few members leads to overwork and delayed progress.

4- The ability to determine which tasks are critical tasks is important. A critical task is one that must be
completed in order for another task in the project to even begin.

3- Lack of documentation leads to teams going in circles as they rediscuss and redecide issues!

2- Pressure to code the product before the design is ready leads to product delays and errors.

1- Communication among team members and with management and the client group is critical for
success. Good communication can overcome many of the other factors listed here when it is combined
with a team that works together for success.

n. Building a Working Team in CS classes

General Goals fo r a CS team:

1. Strive for continuous improvement versus delayed perfection!
2. Avoid the Hero Syndrome
3. Pay now, instead of later.
4. Paper trails - being followed can be a good thing.
5. To collaborate, you must communicate

Explanations for these follow:

Do not procrastinate because you are waiting for everything to be perfect before you seek to present
what you have done to the rest of your team. Collaboration with team members means you should learn
to accept both help and criticism from each other. Also, as an individual, seek to do some work on a
project daily, rather than trying to do it all in 'one big push' on the day before it is due! We all know this
at one level or another, but it doesn't hurt to remind yourself!

No one member in the group should feel that they have to provide inhuman amounts of effort and work in
order for the project to reach completion. At teams, each member should play the hero. But, no one
person should be required to carry the load all of the time.

9/29/00 9:55 AM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3 o f 7

If there is a problem between team members, with team organization, or with the project itself it is wiser
to deal with the problem as soon as it is known. Allowing problems to remain unaddressed only gives
individuals time to get more upset about the situation.

Documentation of team decisions is a preventative against individuals changing the product as they
desire. In a team development situation, each individual needs to work within the team organization in
order to promote the possibility that all the parts will work together in the end! This does NOT mean that
ideas that are different should be ignored. But, once an agreement is reached and documented, it
shouldn't be changed unless the group agrees that the decision is no longer correct!

And, finally, if you want to be a successfiil group, you must work to improve individual and group
communication skills!

Setting Project Goals fo r a team

The obvious goal for any project is to complete the project. However, how do you get to that goal?

One good way to start is to begin with team organization goals:

1. Determine how often you will meet and set a schedule for general meetings during the project
duration. Such things can always be changed if the team decides it is needed. However, if each member
agrees to and knows that meetings every Wednesday at 4:30pm will be the norm, it gives them time
frames of preparation for work with the team.

2. Determine how often the team will expect individuals or committees to produce something new for the
project. A wise choice would be to expect each participant to have something new to report at each
scheduled weekly meeting. This promotes continuous progress

3. Determine how you will keep track of what you do and what your decisions are. This may require that
you get someone to volunteer to be the docurnentarian for your group, this person may take notes at
meetings and will keep all current versions of work delivered by team members each week. Note: this
person should not be expected to type out all documents. Instead, they are a librarian and should know
what documents they have and be able to locate items quickly when a question needs an answer.

4. Determine which team members will take on what roles in the team. For most teams, members have
definite preferences for their own role. Volunteering and discussion of needs usually leads to a good
distribution of work. One individual should be in charge of keeping an eye on the even distribution of
work and should call attention to situations that might point to the 'hero syndrome!'

5. Break down the project time-wise. Start at the end date and work backwards to the current date.
Come up with a tentative plan for where you will be each week!

6. Break down the project task-wise. Try to take the large task and break it down into smaller tasks that
can then be distributed to team members. Remember that some tasks won't be known until later in the
process.

As the project continues, you may make changes to earlier decisions and you will find new tasks and
needs. But, hopefully, your early organization will give you the tools to handle them.

9/29/00 9:55 AM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

III. Communication

4 o f 7

A. Work on you LISTENING skills

Listening to others is not easy. It requires practice, patience and endurance. Most people have very
little concentration when it comes to listening. And yet, we all seem to expect that others will listen
carefully to us when we speak.

Consider this: in your last conversation, how much of the other person's comments do you remember?
How much of your own opinions and comments do you remember? How much did you speak? How
much did they speak? Did anything anyone else say make you stop and think about something you hadn't
already thought about? Or did something they say make you think about something in a different way?

Odds are you remember more of what you said than what they said. It is also likely that you discarded
much of what was said to you if you didn't already agree with it. It is also likely you couldn't even
accurately describe what the other person said to someone else. Work on your endurance in
communication by reminding yourself to listen carefully - expend the energy and consider another
person's thoughts. You will maintain the right to disagree even after you listen!

Be an active listener - show you understand what is being said by rephrasing their comments in your own
words. Ask if what you said matches what they are trying to tell you.

Instead of pretending to understand something that you don't, but willing to ask fo r clarification. It may
be mildly embarassing now...but imagine how embarrassing it will be if you still don't understand a week
later when you are asked to give a report on how you did on the thing you didn't understand!

Prepare yourself to listen and to learn when others are talking. Take a second and give yourself a
mental "kick'1 to be an active listener. Alow people to finish their thoughts before you start yours. Have
some paper available to you so you can jot notes regarding thoughts you have as others think. That way
you can mention these later if you think they will be useful later... without interrupting the speaker.

Finally, reading someone else’s work is an equivalent to listening. Much of the communication between
team members is written. Failure to carefully read and analyze other member's work can lead to crippling
miscommunications for the group. Take the time to read carefully and put notes in the margins as you
read. Ask questions if things are unclear and be critical, but constructive with your comments.

B. Make Yourself CLEAR

Speaking well is very important if you wish to make your ideas clear to others in the group. Computer
Science is no longer a field that should be populated with persons who are unwilling or unable to
communicate.

Some speaking hints:

• Try to make your point early, then support that point
• Watch for non-verbals that tell you the other person doesn't understand or isn't listening
• Alow listeners to ask questions periodically
• Alow listeners to voice their opinions and give them the respect of listening you hope they will

9/29/00 9:55 AM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5 o f 7

give you.
• Be patient. Expect to explain things more than once.

Writing well is also very important. Computer Scientists are expected to write concise descriptions that
explain designs, tests and products. Those who write poorly look less skilled than those who do not. It
does not always mean that the better writer is a better designer or programmer, but their writing skills
make it easier for them to communicate their ideas and skills to others.

Some writing hints:

• Write an outline first.
• Proofread what you write.
• Use spell checkers and grammar checkers - but use them wisely.
• Ask someone else to proofread (and proofread for them in return)

Make the improvement of your own ability to speak and write a goal for yourself. The jobs most covetted
in Information Systems fields are won by those with superior communication skills.

C. Documentation

The paper trail created by documentation can prevent a project group from being crippled by various
events. Consider these scenarios:

• One member of the group has personal opinions that rarely agree with everyone else.
• Someone is no longer a member of the group, or is absent during some meetings.
• A new person is added to the project or replaces another individual
• Management (or the teacher) asks for evidence of progress of your project

Documentation serves as a shield against those who have personal agendas. In one instance, an individual
did not like a decision reached on a topic a week ago. They attempted to change the decision by
introducing the same topic two weeks later. However, the documentation with the decision was used to
inform all members that this topic was no longer valid and had been decided. Otherwise, the group may
have been stuck discussing the same topic for another three hours.

Documentation serves as a reference when someone is absent or a new person joins the task force. Good
documentation can prevent the absence of an individual from crippling the group entirely.

Documentation serves as a promotional tool to show progress and needs to management, client groups or
instructors.

IV. Rules of Conflict

A. The Role o f Dissent

Is the world flat? If it weren't for dissenting opinions, people might have continued to think this for some
time. It is important to recognize that the willingness of some to look at ideas and opinions that are
different from everyone else's could lead to a better solution or idea. This does not mean that one side of
an argument or the other is always right. Frequently, it is some combination of ideas that is the best
solution. However, if you avoid any disagreement or dissent on project development and design ideas,

9/29/00 9:55 AM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

you will not have any useful discussions that will lead to a good product.

• Be willing to listen to ideas that are different from yours
• Be willing to listen to and consider opinions that aren't the same as those in the majority for a

project group.
• Be willing to suggest ideas that are different Despite the fear of what others may think of you.
• Be willing to take the time to discuss ideas and LET THEM EVOLVE with new ideas from all

members of the group. The result may be a far stronger solution than any that could be created by
one person in the group.

• Be willing to review things that everyone thought was decided. It is possible that something new
has been discovered that will show everyone that the decision was wrong.

• And finally... if you are providing a dissenting opinion...be willing to accept that your opinion may
not be the best for the group at this time if discussion does not move to new understandings.

B. Use Strengths Based Approach

When problems arise and the outlook for a project or a team looks bleak, try to avoid dwelling on all of
the negative issues. Instead, look at the strengths the group or the project plan have and determine how
those strengths can be used to handle the issues at hand. Inventory your resources and abilities to
determine how you can turn the situation into a working solution.

A good example occurs in the Princess Bride.... The heroes wish to get into a castle guarded by sixty
men. There are only three of them. Instead of despairing, they determine the assets available to them and
attempt to find a solution to the problem. In this case, their assets include a wheelbarrow, a holocost
cloak, a torch, one person's strength, one person's brain and the last person's ability to use the sword.

In a real world case, the project team was informed that management wanted a new set of requirements
added to a project three weeks prior to the expected delivery of the final project. This project had been
underway for 8 months, and such changes would certainly have been nearly impossible to implement in
three weeks. Furthermore, there was considerable pressure on the group to succeed with the project (jobs
were on the line). The group could have despaired and resigned their posts, going to new businesses and
'better jobs.' The group could have frantically tried to get the project to work with the new items. Or, the
group, could band together and find an alternative.

In this example, the group had a number of strengths. First, the current project was very well documented
and was on schedule for the delivery prior to the new demands. Second, the client group contact person
had a good relationship with the client group who would be using the product. Using these strengths the
group was able to ally themselves with the client group to present a counter proposal to management.
This proposal utilized data from their documentation that showed time and resources necessary for parts
of the project that had been completed that were similar to the new requirements. The group was able to
show management that the request would require an additional five months of work. With the support of
the client group, they proposed a solution that required delivery of the product as it was originally
planned in three weeks. The new requirements would then become part of a new phase of the project that
would undergo the normal processes for the following five months.

Team Development Exercise

6 o f 7 9/29/00 9:55 AM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix II: Demographics Data Collection Tool

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Demog. Coll. Student ID _____
School BSU
Semester Spring

This questionnaire is part of a study being conducted to identify ways instruction in computer science can be
improved. Your answers are confidential and will not effect your grade in any way. I f you are uncomfortable with
any question on this form, please leave it blank.

Gender: M/F Year in School: Fr So Jr Sr Grd Age:

Race (e.g. Native American, Caucasian, Hispanic, etc):

Of the following, circle all responsibilities that apply to you:

Part-time Employment Full-time Employment Parent/Caretaker

Internship Commute

Do you have any learning disabilities that you are aware of (e.g. dyslexia, reading, etc)? Please
identify.

Do you have any physical disabilities that may impact your learning (e.g. eyesight, motor-skills,
etc)? Please identify.

Your average grade in high school (please circle one):

A A/B B B/C C C/D D

Your average grade in college (please circle one):

A A/B B B/C C C/D D

Did you take CS 1309 (Intro to Computer Science)? If so, what semester?

Fall ’00 Spring ’99 Other None

Your grade in CS 1309 (Intro to Computer Science):

A B C D F Not Applicable

Do you plan on being a Computer Science (CS or CIS) major? (rate from 1 to 5)

No Maybe Not I Don’t Know Maybe Yes Yes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Do you plan on being a Computer Science (CS or CIS) minor?

No Maybe Not I Don’t Know Maybe Yes Yes

Do you plan on being a Management Information Systems (MIS) major?

No Maybe Not I Don’t Know Maybe Yes Yes

Do you plan on being a Management Information systems (MIS) minor?

No Maybe Not I Don’t Know Maybe Yes Yes

Rate your level of comfort, from 1 to 5, with computers:

Difficult to work with 1 2 3 4 5 Easy to work with

Rate your level of comfort, from 1 to 5, with math:

Difficult to do 1 2 3 4 5 Easy to do

Rate your level of comfort, from 1 to 5, with problem solving:

Difficult to do 1 2 3 4 5 Easy to do

I f you have programmed before, rate your level of comfort, from 1 to 5, with programming
(don’t answer if you’ve never programmed):

Difficult to do 1 2 3 4 5 Easy to do

How useful do you think CS 1309 will be for your success in this class? (skip i f no CS1309)

Wasted Time 1 2 3 4 5 Extremely Helpful

What were the most useful and least useful parts of the C S 1309 course to you?

What are you most looking forward to in this course?

What are you most worried about in this course?

Thank you for completing this survey. Your help is appreciated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix III: Exit Survey Data Collection Tool

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Exit Survey Student ID _____
School BSU
Semester Spring

This questionnaire is part of a study being conducted to identify ways instruction in computer science can be
improved. Your answers are confidential and will not effect your grade in any way. I f you are uncomfortable with
any question on this form, please leave it blank.

After completing this course, do you plan on being a Computer Science (CS or CIS) major? (rate
from 1 to 5)

No Maybe Not I Don’t Know Maybe Yes Yes

After completing this course, do you plan on being a Computer Science (CS or CIS) minor?

No Maybe Not I Don’t Know Maybe Yes Yes

After completing this course, do you plan on being a Management Information Systems (MIS)
major?

No Maybe Not I Don’t Know Maybe Yes Yes

After completing this course, do you plan on being a Management Information systems (MIS)
minor?

No Maybe Not I Don’t Know Maybe Yes Yes

Rate your level of comfort, from 1 to 5, with computers:

Difficult to work with 1 2 3 4 5 Easy to work with

Rate your level of comfort, from 1 to 5, with math:

Difficult to do 1 2 3 4 5 Easy to do

Rate your level of comfort, from 1 to 5, with problem solving:

Difficult to do 1 2 3 4 5 Easy to do

Rate your level of comfort, from 1 to 5, with programming:
Difficult to do 1 2 3 4 5 Easy to do

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The following questions ask you to think about how a previous course (COMS 1309 - Intro
to CS) has impacted your learning in this course.

How useful do you think COMS 1309 WAS for your success in this class? (skip if no COMS 1309)

Wasted Time 1 2 3 4 5 Extremely Helpful

In your opinion, what were the most useful parts of the COMS 1309 course to you?

In your opinion, what were the least useful parts of the COMS 1309 course?

Is there anything that you think should have been covered in the COMS 1309 course that would
have helped you in this programming course?

Do you have any suggestions that can help us to improve the COMS 1309 or this programming
course (content, materials, order of topics, additional topics, methods of instruction that helped
most, etc)?

Your help in completing this study has been greatly appreciated. Thank you very much for
your time and willingness to share your opinions and to complete quizzes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix IV: Pretest Data Collection Tool

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

pre. A Student I D __________________________
School BSU Class Section__________
Semester Fall
Instructor ______________________

These questions are part of a study being conducted to identify ways instruction in computer science can be
improved. Please do your best to answer each question. Show all work and sketches you use to attempt to solve
the problem. It is important to this study to see how you attempt to solve the problems. I f you use scratch paper,
please include it with this item (put your student ID on it).

1. You are given three mystery numbers, A, B and C. The only way you can leam about
these numbers is by comparing two of them. When you compare, you are told which number of
the two is bigger or if the two numbers are equal. Provide a method that will allow us to always
put the three numbers in order - only using the knowledge we get from the results of ‘compare

2. Provide a step-by-step solution that will convert a time period given in minutes to a time
period given in a combination of years, days, hours and minutes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3. You have been given the task of programming a game of BINGO (or GO, or
CHECKERS, or CHESS-pick a game you KNOW) into a computer. Take a few minutes
and describe your strategy for attempting to program this problem. You do not need to
do any programming, just explain how you will organize your solution.

4. A traveler undertakes to walk, alone and without help, across a desert entirely lacking in
resources. Every 20 kilometers on the 100-kilometer trail there is a shelter. 20
kilometers is exactly what the traveler can walk in 1 day. The traveler can only carry 3
days’ food at a time. He can stock food only at the shelters and can get food only at the
beginning or end of the desert trail. How many days does it take him to cross the desert?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix V: Posttest Data Collection Tool

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

post Student ID _____
School BSU
Semester Spring

These questions are part of a study being conducted to identify ways instruction in computer science can be
improved. Please do your best to answer each question. I f you use scratch paper, please include it with this item
(put your student ID on it).

1. Write a function that will swap the contents of two integer vectors, (when it is done,
vector A will hold B’s integers and B will hold A’s).

2. Write a function (or functions) that receives a vector of integers and checks to see
if the vector holds a palindrome. (A palindrome means that, when reversed, the array
holds the same contents as it had before reversal. Example : 4,2,6,2,4 is still 4,2,6,2,4
when it is reversed.) The function will return true when it IS a palindrome and false when
it is not.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3. Write a function to display a big X on the screen. The X will be a certain number
of characters wide. The function will accept a single parameter (size of the X). Assume
the size of the X will be between 3 and 10. A X of size 6 looks like :

X X (4 spaces between X’s) And size 5 looks like X X (3 spaces)
_x _ x _ _x _x __xx_ _x_
_x _ x _ _x _x _
X X X X

4. You have been asked to write a new program that will help the school schedule their
classes so that each class has a time, room and instructor and avoids conflicts. Write the
appropriate function header definitions and declare major data variables/structures that
you would use to accomplish this task.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix VI: Informed Consent

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CONSENT FORM FOR EDUCATIONAL RESEARCH

Effectiveness of Introductory Computer Science Curriculum

You are asked to participate in a research study conducted by Rob Faux, Ph.D.
Candidate and the Computer Science department at Minnesota State University - Bemidji
(BSU). This research is being conducted as a part of Mr. Faux's doctoral research and
will be used as a tool to improve the curriculum offered by BSU. You were selected as a
possible participant in this study because you are a participant in this course of study.

PURPOSE OF THE STUDY

The purpose of this research project is to evaluate the effectiveness of the Introduction
to Computer Science (CS 1309) curriculum. Various approaches with respect to the
content of the curriculum will be utilized in order to determine which combination of
material works best to support learning. The BSU Computer Science department is
interested in providing learners with the highest quality learning experience possible.
This study will support this goal by working to identify approaches that prepare students
for future courses in the Computer Science.

PROCEDURES

If you volunteer to participate in this study, I would ask you to do the following
things:

♦ Share your opinions with respect to this course by completing evaluations at
the beginning and end of this course.

♦ Participate in the completion of short assessment tools at the beginning and
end of the course.

♦ Allow test and exercise results to be used as measurements of learning that
will provide some feedback on curriculum effectiveness.

POTENTIAL RISKS AND DISCOMFORTS

There are no physical or emotional risks or discomforts anticipated with this research
project beyond the normal effort exerted in a classroom environment. Any uses of test
scores or exercise results will be coded so that individual learners are not identified by the
researcher.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

POTENTIAL BENEFITS TO SUBJECTS AND/OR TO SOCIETY

No immediate, direct benefits will be given to you for participation in this research
study. However, the findings of this study may be beneficial to you in later courses, or to
those who follow you as they take this sequence of courses at BSU. Further, findings of
these studies may encourage other organizations to adopt more effective methods of
teaching and learning in this area.

CONFIDENTIALITY

Any information that is obtained in connection with this study and that can be
identified with you will remain confidential and will be disclosed only with your
permission or as required by law. Your work will be used to determine your success in
this class, as it would in most classroom situations. Confidentiality will be maintained by
means of coding of your work so that the researcher is unaware of names and other
identifying information. The information gained from this research project may be
published in professional journals, shared in presentations, symposia, educational
seminars and sessions without personal identifications of the participants.

PARTICIPATION AND WITHDRAWAL

You can choose whether or not to be a part of this study. If you volunteer to be in this
study, you may withdraw at any time without consequences of any kind. You are not
waiving any legal claims, rights or remedies because of your participation in this research
study. You are reminded that participation in this study will not change your requirements
for effort in this course of study.

IDENTIFICATION OF REARCHER

If you have any questions or concerns about the research, please feel free to contact:

Rob Faux, Ph.D. Candidate
2506 Townline Road
Decorah, LA 52101
rfaux@oneota.net

I understand the procedures and information described above. My questions have been
answered to my satisfaction, and I agree to participate in this study. I have been given a
copy of this form.

Signature of Participant Date

Signature of Researcher Date

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mailto:rfaux@oneota.net

www.manaraa.com

Appendix VII: Instructor Information

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

oencnmarK teaming: mam ooay

lofl

Introduction to Computer Science Study

Demographics Survey

Thank you for being willing to participate in this study. It is our hope that some link to curriculum
changes in COMS 100/CS 1309 Intro to Computer Science will be found regarding learning in the first
programming course.

This study is serving as the dissertation in Computer Science Education for Rob Faux. Please feel to
contact him at any point with concerns or questions.

• Do not distribute the questionnaire prior to completion of Informed Consent.
• You may do this before or after the Pre Test
• Ask students to only mark their student ID, not their names, on the questionnnaire
• If a student expresses concern regarding any of the questions, you may remind them that they may

skip a question
• Clarify questions for individual students as necessary.
• Remind students that there are questions on the front and back of the form.
• Collect all resulting papers and submit them to Marty Wolf (Bemidji) or Lee Cornell (Mankato!.

They will work with me to forward the items to my care.
• Data results of the pretest will be provided to Lee and Marty and will be available on request.

Demographics (Mankato)

Demographics (Bemidii)

Return to Main Page

rfaux 8/29/00

9/5/00 8:41 PM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

uciii/fiiumn bcauuii^. mam w u y xiiv./'/V |/m j iyuvuiuvin»iwf / 1 mv/i l/ouiouuviui/vuiiduii.auu

Introduction to Computer Science Study

Informed Consent

Thank you for being willing to participate in this study. It is our hope that some link to curriculum
changes in COMS 100/CS 1309 Intro to Computer Science will be found regarding learning in the first
programming course.

This study is serving as the dissertation in Computer Science Education for Rob Faux. Please feel to
contact him at any point with concerns or questions.

• Please complete the Informed Consent before the Pre Test or Demographics Survey.
• Any student may opt to not participate in this study. I f I do not have an informed consent form on

file for a given Student ID , any information received regarding that person will be ignored.
• Please make sure students include their Student ID next to their signature.
• Collect all resulting papers and submit them to Marty W olf (Bemidji) or Lee Cornell (Mankato).

They will work with me to forward the items to my care.

Informed Consent (Mankato)

Informed Consent (Bemidji)

Return to Main Page

rfaux 8/29/00

l o f l 9/5/00 8:42 PM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Introduction to Computer Science Study

lo fl

Exit Survey

Thank you for being willing to participate in this study. It is our hope that some link to curriculum
changes in COMS 100/CS 1309 Intro to Computer Science will be found regarding learning in the first
programming course.

This study is serving as the dissertation in Computer Science Education for Rob Faux. Please feel to
contact him at any point with concerns or questions.

• Please implement this survey at the end of the course. It may occur before or after the final. It may
also occur before or after the post test.

• Ask students to only mark their student ID , not their names, on the questionnnaire
• I f a student expresses concern regarding any of the questions, you may remind them that they may

skip a question
• Clarify questions for individual students as necessary.
• Remind students that there are questions on the front and back of the form.
• Collect all resulting papers and submit them to Lee Cornell (Mankato) or Marty Wolf (Bemidji).

They will work with me to forward the items to my care.
• Data results of the pretest will be provided to Lee and Marty and will be available on request.

Exit Survey (Mankato)

Exit Survey (Bemidji)

Return to Main Page

rfaux 8/29/00

9/5/00 8:42 PM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ivviivitiiiuiiv ĵ vwiuiig. niaui uvuj

1 of 1

Introduction to Computer Science Study

Implementing Post Test

Thank you for being willing to participate in this study. It is our hope that some link to curriculum
changes in COMS 100/CS 1309 Intro to Computer Science will be found regarding learning in the first
programming course.

This study is serving as the dissertation in Computer Science Education for Rob Faux. Please feel to
contact him at any point with concerns or questions.

You have two options for implementing this part of the study.

OPTION 1: Offer posttest as an event that will not be graded "" nn / -s

OPTION 2: Offer posttest as a part of the course final

« Distribute copies of post test A and B evenly throughout the classroom
• Allow learners 45 minutes to complete the test
• Ask students to only mark their student ID , not their names, on the post test
• Allow students to use scratch paper and ask them to put their student ID on these and include them

with the posttest.
• There are (TBA) questions on this pretest. Please note this to students.
• Encourage students to break time down so that they have a chance to do some work on each

problem
• Collect all resulting papers and submit them to Lee Cornell (Mankato) or Marty Wolf (Bemidji).

They will work with me to forward the items to my care.
• Data results of the pretest will be provided to Lee and Marty and will be available on request.
• For curious students - answers to these questions will not be made available until after the use of

these questions during the Spring Semester. (Summer of 2001)

Post Test A

Post Test B

Return to Main Page

rfaux 8/29/00

9/5/00 8:42 PM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

DencnmarK Learning: mam ooay

Introduction to Computer Science Study

Description

Research Question:

Will the integration of a set of beginning software engineering and problem solving concepts and
techniques into a pre-programming computer science course impact the overall learning of computer
science concepts and programming techniques for college and university learners?

Summary:

This study attempts to measure learning in the first programming course as it is influenced by the content
of the preprogramming course. The researcher has provided base materials for new topics to be
integrated into the existing preprogramming curriculum (which is currently based on Gersting &
Schneider). For the next two semesters (Fall, 2000 and Spring, 2001), data will be collected in the first
programming courses regarding learning. The majority o f learners in the fall courses will not have been
exposed to these new topics in the class environment. Most of the spring course attendees will have had
this exposure. Various data collection tools are provided to allow the researcher to perform paired
analysis.

Expectations of Preprogramming Course Faculty (COMS 100/CS 1309):

Faculty for the preprogramming courses are asked to integrate the topics and material provided by the
researcher into this course. The materials provided by the researcher are provided to be base materials in
a similar vein to the Gersting/Schneider text. Instructors are asked to incorporate these topics and
provide them with appropriate weight and emphasis in the course during the Fall, 2000 semester. In other
words, the instructor is responsible for selecting exercises, exam questions and class materials for these
topics, using the materials provided by the researcher as the framework. Instructors may opt to continue
to use these topics and materials in future semesters at their discretion.

Expectations of First Programming Course Faculty:

Faculty in the first preprogramming course are asked to implement several data collection devices during
both the Fall, 2000 and Spring, 2001 terms. These tools include.

1- Informed Consent
2. Demographics Survey
3. Pretest
4. Mid-Term Exercise
5. Posttest
6. Exit Survey

Instructors are asked to provide class time for these events. Data analysis results will be provided to

1 o f2 9/5/00 8:41 PM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2 o f 2

participants on completion of the analysis. Each of these items will include only the student ID and school
as identifying factors to allow paired analysis.

The Mid-Term Exercise and Posttest may be utilized as graded events, at the discretion of the faculty
person. However, the grade will not be considered or viewed by the researcher. Similarly, the research
analysis will not be available for grading purposes. I f these two items are utilized as items for grading, the
researcher requests that an unmarked COPY of the student's work be sent to him for analysis.

Contacts for this study at the respective schools are Marty Wolf (Bemidji) and Lee Cornell (Mankato).
Please submit all materials to them in order to streamline forwarding to the researcher.

Please review guidance material for each data collection item prior to implementing them. I f you have any
concerns, questions or notice difficulties with the materials, please contact the researcher.

Researcher Biographical Information:

Rob Faux is currently a doctoral candidate with Union Institute, based in Cincinnati, Ohio. Rob's field of
study is Computer Science Education, which will supplement a M.S. in Computer Science from MSU
-Mankato and a B. A. in Computer Science and Mathematics from Luther College in Decorah, I A. Rob
also serves as an Associate Faculty member for Open University in the field of Computing.

I f you would like to know more about Rob's doctoral program or would like a copy of the
dissertation/research proposal, please feel free to email him.

Full Proposal

Return to Main Page

rfaux 8/29/00

9/5/00 8:41 PM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix VIII: UIU Institutional Review Board Materials

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

*Ifte Union institute
440 E. McMillan Street

Cincinnati, Ohio 45206-1925
513/861-6400 ♦ 800/486-3116

TDD 800/486-9968 ♦ FAX 513/861-0779

January 11,2001

Mr. Robert Faux
2506 Town Line Road
Decorah, IA 52101

Re: IRB #TUI-0001
Impact o f Preprogramming Course Curriculum Content on Student Learning in the First
Programming Course

Dear Mr. Fox:

The Institutional Review Board o f The Union Institute, at its meeting o f January 10, 2001, has approved
your proposed research project.

Since your project is already under way under an approval issued by the IRB o f Minnesota State
University, The Union Institute’s IRB has determined that this approval shall be concurrent with that o f
Minnesota State University. That is, the Union Institute IRB approves your study for a period o f twelve
months, beginning September 1, 2000 through August 31, 2001.

The IRB reserves the right to review your study as part o f its continuing review process. Continuing
reviews are typically scheduled in advance, however, the IRB may choose, under certain conditions, to
not announce a continuing review. Please notify the IRB Chair when you have concluded your study.

Should you wish to make any substantive changes in your study design, funding source(s), consent
processes, or any other aspect o f the study that may affect study participants, you are required to submit
proposed changes to the IRB for review. Should you require an extension on this approval, you are
required to submit a request for extension to the IRB for review. The IRB reference number at the top o f
this letter should be used in any correspondence regarding your study.

On behalf o f the IRB, I wish you success with your study and a satisfactory conclusion to your doctoral
program with The Union Institute.

Sincerely,

Linda C. Van Volkenburgh
Acting Chair, Institutional Review Board

cc. Richard Genardi, Dean
Ben Davis, Core Faculty Advisor

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Union Institute
Institutional Review Board

Submission Form

Send or fax signed farm to:
IRS C hair e/o Office of lastitifiionai
Research
440 E. McMillan Street
Esiimman, OH 45206
Fax: 5t3>86t4W38

'this section to he completed try Office of ImtiUitfaaaf Research & Assessmeaf
I Date received:

\j. i t ’ utton No.

I oiiege:

l# « m t o«s to Researchers
To comply with federal regulation s ws. si as to conform with giwM tes of the nttjversin’s (nathutto'tui
Review Board (IRB I. the principal rest ir her is required to complete all of the following hems curtained In
the submission f-uni width. IRB pru *.oi Upon completion of .til iRiottnalnxt t i t principal researcher
shat) submit the anginal Snfrmissn n t nn and one copy «l Site ptokvoi kk tndmg ail umwni iorms and

sum wm-nto tqucstn raws is ink m aw i to.) to for iRB J»,w v'tj t Miles of Institutional Research
nd Wwv-nert Yarn appitc to n u<l Ire fotwmdod to the review board ,»» requested n< ncUioh i

iW v h w are* advised to submit onfv vompkL' uell-dercH^xxt research projects for review. First,
incomplete appfaatHmc w of raw he cipprosed fa the res kv, poatd. 'wxeiul once a project has been
approved am changes vuif requite further fRft or 8RB n*sten Fte IRfl miy decide to suspend projects
when tk u'M jahe? ius submitted multiple requests foj rctiswns

The entire Form must be stifa.niy.eci with the application Cor review. Do not »«ove any sections from the

Please P rint Clearly or Tyjw.
Section I. Efatmiil lofermsttot I
A pplication submitted fo r

I j Full IRB or rsRii Review
! | | Exemption
[J Revision

Application to be submitted to:
Cl IRR
□ U S SRB
c . ; < H -SRB

I £wp«c4 n-f fttViww.Ŵ C*»'S« Cvor-rfclu.*. £*(*»&-
| .W» g4*+-

| Proposed stan date | & 0 0
l _

fPrposed end elate: ' ^ ^ 0 , ^ 0 0 I

I ’Performance sitefs) 0*/.TNtm<3£» —
I n — 1(Sr*t*i o f

| Name o f Principal Researcher
1 ReS X

The Union fasttae
1R.B Submission Form KV26

j ̂ P I oniinuaboitcrf approval _ } _ SOPP-SRB _ ______ _^
I PtOfCU lif lt

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Relationship to The Union Institute:
[J Faculty jSP'-®5
[JStafT Q Other

•earner f
|
|

College or Department:
L i College of Undergraduate Studies LJ Office for Social Responsibility
63-Graduate College, Arts & Sciences* L.1 Other
Cj School of Professional Psychology

Încludes HBCU. t.JTt>, and odter doctoral tniiuuivcs !
Researcher’s Mailing Addtesw • {

a. STOb TovUaj }
sr'aio) !

Researcher's telephone Number (tnctude area code): ̂ ^ |

| ResearclierLlUraaii Address:.......... !
3 I
I Co-Researeheifs), Including institutional affiliations: iI I
I *
|, . _ |
| General academic discipline guiding the research protocol (e.g. Psychology, Education., |
j Sociology, History, etc.) JtrOuc C ■ S c \ 4 . + i <.ej I

j _ _ !
P8HuiiurfTtfi>(caJ^hec: Sign and 1> itc j

 „........... . Chfe................................. j
I ̂ Signature " > _ ,.,...... |

j Section I t Funding Information J
{ Complete tins socuoh if you intend to seek external fyitding. I f no esteraaJ funding w ill be sought, proceed I
| to Sccttoa Jli. All researchjMposals involviagexternal ftutding,must be reviewd by the IRB. _ I
| Funding Source f

j Project Title (if different from Section I):

 A

| Principal Researcher (if different from Seaton 1): j

I Type o f Application: I
1 [] Grant I] Subcontract f l Contract |] Fellowship
| ~ ~ ~ |
| Date of Submission to Fun 1 i S urce: i

i

The 'Union Institute
IRB Submission Fonts 10/26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

; Section I I I , < ulbtborjtivt Research 1
[< uiiii'L;,. u*i.i sa...ikjJi oitl* (I (h- u'seii t wtii I t don it? rv !i itwrsiuon nuh another imutntuiti f
I lvtrt*» i|uiuit> >i<«t<t.iltons <Jmu n.>p(*HsihiliU f.'< s,ik ’lutdmr tl*v rii*hi* „ihJ welfare of hunun subjects and j
i to? sotufmmg w itii ait upplk tw. iqniu.o.iv Aft applications tor apprcsvai of collaborative research must |
! be submitted to the Insmutioiul Rsx n w Board _ |
' \ \ ill I li>* I tuon lust itute b** tl e U ad institution for this collaborative research’1 J
I ̂ r iY c s _ M N O f j
p f^ g jp to c m i to votton l \ If no completi this section _ |
j Lead Institution f n m „ €Sif a S h t k O h >m c j ? U < I

! ' • J 1! |
j Contact I u v i? ~ /T&fty j Dak-oHR!* Review a I s ? 1 Institution: |
J rftS L S * p)*}.'ZOOC> |
| Lead institution M B Recommendation; . j , j n D I

--mP. q fce,pTe<P f ^ 3 j

\ti.n !s viipii s oi jd J,x umcnulson >vruitsimv it? HU I rc\ lew a! the !>\id luMriutint? >nchtdSng the complete |
jppliuition iis resiewtd bs the IRB and ieom o f thi feiu» inntovuig she u search

rUhnJp A V, W “«t» v*- -4 £.504 V> *v <sj *1 s. r> teCSft-V. -5* 1. V .£ -I' •<■ ’•V £>*" ■WWv',*»> ^ V. -- ««

v , {(«< l \ . S | l b f O l fl'fnt 111 !>«<)!!
I! am suhivvts nl the propowd rescan i> are part et a proUvted population 1 children pregnant uotnut

" ritisotteis dtsahi. d? or it dw r^sear Is ?wsolst.s mow than trtitnfswl risk the jnopost! must be <-t!bi?t?«ed to
f the
| Subjects (check all that apply)
1 [j Ferns 10 utero/mvn*viable ftu «. tbonuses
| L I Mewboms/tafants (less that s old)
| IJ Children (aged 2-12)
| - u Adolescents (aged 13-18)
j Adults (over age 18)
I [] Prt?«?taitt women
! & o t i iu vh, ittl'’ populations (jBg piisorsm, mental iv til/disabled). Describe:
j _ tfT-....AJOf/ "(|pŵs wi ̂ *^w »

| Other (check ail ih«tt apph):
| L i Ose of .nr i‘\tnMtional drugs or devices
f L i Infoitiuiioi in be ctdlected requires special sensitivity (e.g. substance
iU.
| Number of subjttl*?

i i I h is v '-cxnal behavior) \

a 00

| W ill subjects be compensated ̂
1 out! ??f coinpeitsatioit

|
j Amonm o f compensation;

Approximate total time commitment for
each subject: 3 hou^s

,J Yes . _ . ,0 3 No

— i

m IsssWiifi;
? mission Pom? 10/26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1 Research Protocol Rob Faux 109462
Impact of Preprogramming Course Curriculum Materials

on Student Learning in the First Programming Course___________

I. General Information

a. Project Title

Impact of Preprogramming Course Curriculum Materials on Student Learning
in the First Programming Course

b. Principle Researcher

Mr. Robert Faux
2506 Town Line Road
Decorah, IA 52101
319-387-0582
rfaux@,oneota. net

c. Proposed Study Dates

September 1,2000 and May 30,2001

d. Location of Project

Minnesota State University - Mankato
Computer and Information Sciences Department
PO Box 6800
Mankato, M N 56002-6800
Preprogramming course - COMS 100 (fall - curriculum content only)
First programming course - COMS 102 (fall & spring - data collection only)

Minnesota State University - Bemidji
Mathematics and Computer Science Department
1500 Birchmont Drive
Bemidji, M N 56601
Preprogramming course - CS 1309 (fall - curriculum content only)
First programming course - CS 2321 (fall & spring - data collection only)

e. Source of Funding

None

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2 Research Protocol Rob Faux 109462
Impact of Preprogramming Course Curriculum Materials

on Student Learning in the First Programming Course____________

II. General Purpose of and Potential Benefits of Research Project

This study focuses on the impact particular curriculum content might have on how
learners in the preprogramming course are able to perform in the first
programming course. Topics have been added or expanded in the
preprogramming course to include material on Problem Solving, Testing
Algorithms, Flow Charts, Team Development, Software Engineering, and
Diagramming. It is hypothesized that these new topics will provide tools that will
better prepare learners for success in the programming course.

III. Project Description, Methods and Procedures

This study attempts to measure learning in the first programming course as it is
influenced by the content of the preprogramming course. The researcher has
provided base materials for new or expanded topics to be integrated into the
existing preprogramming curriculum (which is currently based on Gersting &
Schneider). For the next two semesters (Fall, 2000 and Spring, 2001), data will
be collected in the first programming courses regarding learning quality. The
majority o f learners in the fall courses will not have been exposed to these new
topics in the class environment. Most of the spring course attendees will have had
this exposure. Various data collection tools are provided to allow the researcher
to perform paired analysis on course learning.

Faculty for the preprogramming courses are asked to integrate the topics and
material provided by the researcher into this course. The materials provided by
the researcher are base materials in a similar vein to the Gersting/Schneider text.
Instructors are asked to incorporate these topics and provide them with
appropriate weight and emphasis in the course during the Fall, 2000 semester. In
Other words, the instructor is responsible for selecting exercises, exam questions
and class materials for these topics, using the materials provided by the researcher
as the framework. Instructors may opt to continue to use these topics and
materials in future semesters at their discretion.

Faculty in the first preprogramming course are asked to implement several data
collection devices during both the Fall, 2000 and Spring, 2001 terms. These tools
include: Demographics Survey, Pretest, Posttest, and Exit Survey. Instructors are
asked to provide class time for these events. Data analysis results will be provided
to participants on completion of the analysis. Each of these items will include
only a student identifier to allow for paired analysis. No direct identification will
be included that will allow the researcher to track actual results to the student.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3 Research Protocol Rob Faux 109462
Impact of Preprogramming Course Curriculum Materials

on Student Learning in the First Programming Course _______ '

IV. Description of Subjects, Recruitment and Compensation

Data collection will be performed on participants in the Fall, 2000 and Spring,
2001 semester courses offered by the Computer and Information Sciences
Departments at Minnesota State University at Mankato and Bemidji. All
participants are college-aged individuals and should be a representative
population of MSU students. The sample size is estimated to be approximately
200 total students. Individuals with disabilities, who are members of other
protected populations may be participants in this study, but are not recruited for
these reasons.

Participant recruitment is based solely on course enrollment. Members of
participating classes are not aware of the existence of the study at the point of
enrollment. No effort is made to promote participation in this study.

Participants are not compensated for participation in this study. Participants are
not required to perform additional tasks outside of classroom activities.

V. Protection of Subject’s Rights/ Potential Risks and Confidentiality

Students will be informed of their rights with respect to the participation of this
study via the Informed Consent form included with this document. The form
includes a description of the intent and purpose of the study, delineation of
potential risks and benefits, and their rights regarding participation. Students are
given the right to remove themselves from the study at any point during data
collection.

Consent documents will be maintained with the data collection materials with the
researcher (contact person) listed on this form. The researcher will maintain data
collection documents. Data analysis results will be available on request. Data that
may identify an individual will be destroyed and not used for data analysis.

A student identifier marks student materials rather than a name for the purposes of
paired analysis in this study. The researcher will not have access to the names or
identities of those who are performing the work. Instructors in these courses will
be provided with access to post analysis data, but specific analysis to a given
individual’s material will not be allowed.

There is no direct risk to participants in this study. Results of data collection will
not be used to determine success in the course. Participants will not singled out
for participatory reasons and study content will be integrated into normal course
workings.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4 Research Protocol Rob Faux 109462
Impact of Preprogramming Course Curriculum Materials

_____________ on Student Learning in the First Programming Course_____________
VI. Signature

In making this application, I certify that I have read and understand the Policies
and Procedures for Projects that Involve Human Subjects, and that I intend to
comply with the letter and spirit of the Union Institute’s policies. Significant
changes in the protocol will be submitted to the IRB for written approval prior to
these changes being put into practice. Informed consent/assent records of the
participants will be kept for at least three (3) years after the completion of the
research.

Principle Investigator

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5 Research Protocol Rob Faux 109462
Impact of Preprogramming Course Curriculum Materials

____________ on Student Learning in the First Programming Course

CONSENT FORM FOR EDUCATIONAL RESEARCH |

Effectiveness of Introductory Computer Science Curriculum

You are asked to participate in a research study conducted by Rob Faux, Ph.D.
Candidate and the Computer and Information Sciences department at Minnesota
State University - Mankato (MSU). This research is being conducted as a part of
Mr. Faux's doctoral research and will be used as a tool to improve the curriculum
offered by MSU. You were selected as a possible participant in this study
because you are a participant in this course of study.

PURPOSE OF THE STUDY

The purpose of this research project is to evaluate the effectiveness of the
Introduction to Computer Science (COMS 100) curriculum. Various approaches
with respect to the content of the curriculum will be utilized in order to determine
which combination of material works best to support learning. The MSU
Computer and Information Sciences department is interested in providing learners
with the highest quality learning experience possible. This study will support this
goal by working to identify approaches that prepare students for future courses in
the Computer and Information Sciences.

PROCEDURES

If you volunteer to participate in this study, I would ask you to do the following
things:
♦ Share your opinions with respect to this course by completing evaluations at the

beginning and end of this course.
♦ Participate in the completion of short assessment tools at the beginning and end of the

course.
♦ Allow test and exercise results to be used as measurements of learning that will

provide some feedback on curriculum effectiveness.

POTENTIAL RISKS AND DISCOMFORTS

There are no physical or emotional risks or discomforts anticipated with this research
project beyond the normal effort exerted in a classroom environment. Any uses o f test
scores or exercise results will be coded so that individual learners are not identified by
the researcher.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

6 Research Protocol Rob Faux 109462
Impact of Preprogramming Course Curriculum Materials

on Student Learning in the First Programming Course__________
POTENTIAL BENEFITS TO SUBJECTS AND/OR TO SOCIETY

No immediate, direct benefits will be given to you for participation in this research
study. However, the findings of this study may be beneficial to you in later courses, or to
those who follow you as they take this sequence of courses at MSU. Further, findings of
these studies may encourage other organizations to adopt more effective methods of
teaching and learning in this area.

CONFIDENTIALITY

Any information that is obtained in connection with this study and that can be
identified with you will remain confidential and will be disclosed only with your
permission or as required by law. Your work will be used to determine your success in
this class, as it would in most classroom situations. Confidentiality w ill be maintained by
means of coding of your work so that the researcher is unaware of names and other
identifying information. The information gained from this research project may be
published in professional journals, shared in presentations, symposia, educational
seminars and sessions without personal identifications o f the participants.

PARTICIPATION AND WITHDRAWAL

You can choose whether or not to be a part of this study. I f you volunteer to be in
this study, you may withdraw at any time without consequences of any kind. You are not
waiving any legal claims, rights or remedies because of your participation in this research
study. You are reminded that participation in this study w ill not change your
requirements for effort in this course of study.

IDENTIFICATION OF REARCHER

I f you have any questions or concerns about the research, please feel free to contact:
Rob Faux, Ph D. Candidate
2506 Townline Road
Decorah, IA 52101
rfaux@oneota.net

I understand the procedures and information described above. My questions have been
answered to my satisfaction, and I agree to participate in this study. I have been given a
copy of this form.

Signature of Participant (student ID) Date

Signature of Researcher Date

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mailto:rfaux@oneota.net

www.manaraa.com

Appendix IX: MSU Institutional Review Board Materials

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

M innesota State
University

September 14,2000 m a n k a t o

Robert Faux
2506 Town Line Road
Decorah, IA 52101

From: Anthony Filipovitch, IRB Administrator
MSU Institutional Review Board (IRB)

Re: IRB #1248
Impact of the Integration of Software Engineering Concepts and Problem Solving

Techniques in Preprogramming Course Curriculum Materials on Student Learning in the
First Programming Course

On behalf of the Institutional Review Board I wish you success with your study.
Remember that you must seek approval for any changes in your study, its design, funding
source, consent process, or any part of the study that may affect participants in the study.
Should any of the participants in your study suffer a research-related injury or other
harmful outcome, you are required to report them to the IRB as soon as possible.

Approval of your study is for one calendar year from the approval date. When you
complete your data collection, or should you discontinue your study, you must notify the
IRB. Please include your log number with any correspondence with the IRB.

The IRB reserves the right to review each study as part of its continuing review process.
Continuing reviews are usually scheduled, however under some conditions the IRB may
choose not to announce a continuing review.

Sincerely,

Anthony j/Fffipovitch
IRB Administrator

Cc: file

in s t it u t io n a l r e v ie w b o a r d

COLLEGE OF GRADUATE STUDIES A N D RESEARCH
125 WiGLEY ADMINISTRATION CENTER • M A N K A T O . M N 56001

PHONE 507-389-6310 • FAX 507-389-5974
An affirmative action/equal opportunity university

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• Benjamin R.H. Davis •

FAX TRANSMITTAL

Date September 12. 2000
of pages _2_

To: lQQy_£jilipo¥itdi
FAX# 5Q7 - 389 - .59-7.4

Re: IRB fasttrack - Rob Faux

• P.O. Box 27 • Bolinas, California 94924 •

Dr. Filipovitch,

I have included a copy of the committee sign-off sheet concerning Rob Faux’s
proposed research project. His doctoral committee has approved his study,
including his statement and forms related to the protection of human subjects.
In the TUI academic process, the doctoral committee is responsible for assuring
the candidate fully informs the research respondents and protects their rights as
participants.

Thank you for your assistance with Rob’s research.

Ben Davis, Ph.D.
Professor
Graduate School of Interdisciplinary Arts and Sciences
The Union Institute
442 McMillan Ave
Cincinnati, OH 45201

Core Faculty, The Union Institute Graduate College
PHONE & FAX: 415/868/9313

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Application for the Conduct of Research Involving Human
________ Subjects Guidelines _____________

I. General Information

a. Principle Investigators

Dr. Richard Roiger
Computer and Information Sciences Dept
PO Box 8400
Minnesota State University - Mankato
Mankato, M N 56002-8400
507-389-2968
roiger@krypton.mankato.msus.edu

b. Co-Investigator

Mr. Robert Faux
2506 Town Line Road
Decorah, IA 52101
319-387-0582
rfaux@oneota.net

c. Whom the IRB should contact regarding proposal

Robert Faux (as above)

d. Project Title

Impact of the Integration of Software Engineering Concepts and Problem
Solving Techniques in Preprogramming Course Curriculum Materials on
Student Learning in the F irst Programming Course

e. Proposed Study Dates

Fall, 2000 and Spring, 2001 terms

f. Location of Project

Minnesota State University - Mankato
Computer and Information Sciences Department
Preprogramming course - COMS 100 (fall - curriculum content only)
First programming course - COMS 102 (fall & spring - data collection only)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mailto:roiger@krypton.mankato.msus.edu
mailto:rfaux@oneota.net

www.manaraa.com

g. Source of Funding

None

II. General Purpose of Research Project

This study focuses on the impact particular curriculum content might have on how
learners in the preprogramming (COMS 100) course are able to perform in the
first programming course (COMS 102). Topics in COMS 100 have been added or
expanded to include material on Problem Solving, Testing Algorithms, Flow
Charts, Team Development, Software Engineering, and Diagramming. It is
hypothesized that these new topics will provide tools that will better prepare
learners for success in the programming course.

III. Project Description

This study attempts to measure learning in the first programming course as it is
influenced by the content of the preprogramming course. The researcher has
provided base materials for new or expanded topics to be integrated into the
existing preprogramming curriculum (which is currently based on Gersting &
Schneider). For the next two semesters (Fall, 2000 and Spring, 2001), data will
be collected in the first programming courses regarding learning quality. The
majority of learners in the fall courses will not have been exposed to these new
topics in the class environment. Most of the spring course attendees will have had
this exposure. Various data collection tools are provided to allow the researcher
to perform paired analysis on course learning.

Faculty for the preprogramming courses are asked to integrate the topics and
material provided by the researcher into this course (see appendix C). The
materials provided by the researcher are base materials in a similar vein to the
Gersting/Schneider text. Instructors are asked to incorporate these topics and
provide them with appropriate weight and emphasis in the course during the Fall,
2000 semester. In other words, the instructor is responsible for selecting exercises,
exam questions and class materials for these topics, using the materials provided
by the researcher as the framework. Instructors may opt to continue to use these
topics and materials in future semesters at their discretion.

Faculty in the first preprogramming course are asked to implement several data
collection devices during both the Fall, 2000 and Spring, 2001 terms. These tools
include: Demographics Survey, Pretest, Mid-Term Exercise, Posttest (see
Appendix B). Instructors are asked to provide class time for these events. Data
analysis results will be provided to participants on completion of the analysis.
Each of these items will include only the student identifier as identifying factors
to allow paired analysis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

IV. Description of Subjects

Data collection will be performed on participants in the Fall, 2000 and Spring,
2001 semester COMS 102 courses offered by the Computer and Information
Sciences Department at Minnesota State University at Mankato. All participants
are college-aged individuals and should be a representative population of MSU
students. The sample size of this population is based on roughly 25 students per
course section of COMS 102. Fall semester will include a rough sample of 150
students.

V. Protection of Subject’s Rights

Students will be informed of their rights with respect to the participation of this
study via the Informed Consent form included as Appendix A in this document.
The form includes a description of the intent and purpose of the study, delineation
of potential risks and benefits, and their rights regarding participation. Students
are given the right to remove themselves from the study at any point during data
collection.

Consent documents will be maintained with the data collection materials with the
researcher (contact person) listed on this form. Principle investigators will have
access to these documents on request.

A student identifier marks student materials rather than a name for the purposes of
paired analysis in this study. The researcher will not have access to the names or
identities of those who are performing the work. Instructors in these courses will
be provided with access to post analysis data, but specific analysis to a given
individual’s material will not be allowed.

VI. Signatures

In making this application, I Certify that I have read and understand the Policies
and Procedures for Projects that Involve Human Subjects, and that I intend to
comply with the letter and spirit of the University Policy. Significant changes in
the protocol will be submitted to the IRB for written approval prior to these
changes being put into practice. Informed consent/assent records of the
participants will be kept for at least three (3) years after the completion of the
research.

Principle Investigators

Co-Investigator

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix A: Informed Consent

The following will be presented to each participant in the Fall, 2000 and Spring
2001 COMS 102 courses. Participants who do not opt to sign this form will not
be included in data analysis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CONSENT FORM FOR EDUCATIONAL RESEARCH

Effectiveness o f Introductory Computer Science Curriculum

You are asked to participate in a research study conducted by Rob Faux, Ph.D.
Candidate and the Computer and Information Sciences department at Minnesota
State University - Mankato (MSU). This research is being conducted as a part of
Mr. Faux's doctoral research and will be used as a tool to improve the curriculum
offered by MSU. You were selected as a possible participant in this study
because you are a participant in this course of study.

PURPOSE OF THE STUDY

The purpose of this research project is to evaluate the effectiveness of the
Introduction to Computer Science (COMS 100) curriculum. Various approaches
with respect to the content of the curriculum will be utilized in order to determine
which combination of material works best to support learning. The MSU
Computer and Information Sciences department is interested in providing learners
with the highest quality learning experience possible. This study will support this
goal by working to identify approaches that prepare students for future courses in
the Computer and Information Sciences.

PROCEDURES

If you volunteer to participate in this study, I would ask you to do the following
things:
♦ Share your opinions with respect to this course by completing evaluations at the

beginning and end of this course.
♦ Participate in the completion of short assessment tools at the beginning and end of the

course.
♦ Allow test and exercise results to be used as measurements of learning that will

provide some feedback on curriculum effectiveness.

POTENTIAL RISKS AND DISCOMFORTS

There are no physical or emotional risks or discomforts anticipated with this research
project beyond the normal effort exerted in a classroom environment. Any uses o f test
scores or exercise results w ill be coded so that individual learners are not identified by
the researcher.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

POTENTIAL BENEFITS TO SUBJECTS AND/OR TO SOCIETY

No immediate, direct benefits will be given to you for participation in this research
study. However, the findings of this study may be beneficial to you in later courses, or to
those who follow you as they take this sequence of courses at MSU. Further, findings of
these studies may encourage other organizations to adopt more effective methods of
teaching and learning in this area.

CONFIDENTIALITY

Any information that is obtained in connection with this study and that can be
identified with you w ill remain confidential and will be disclosed ofily with your
permission or as required by law. Your work will be used to determine your success in
this class, as it would in most classroom situations. Confidentiality w ill be maintained by
means of coding of your work so that the researcher is unaware of names and other
identifying information. The information gained from this research project may be
published in professional journals, shared in presentations, symposia, educational
seminars and sessions without personal identifications of the participants.

PARTICIPATION AND WITHDRAWAL

You can choose whether or not to be a part of this study. I f you volunteer to be in
this study, you may withdraw at any time without consequences of any kind. You are not
waiving any legal claims, rights or remedies because of your participation in this research
study. You are reminded that participation in this study will not change your
requirements for effort in this course of study.

IDENTIFICATION OF REARCHER

I f you have any questions or concerns about the research, please feel free to contact:
Rob Faux, Ph.D. Candidate
2506 Townline Road
Decorah, IA 52101
rfaux@oneota.net

I understand the procedures and information described above. My questions have been
answered to my satisfaction, and I agree to participate in this study. I have been given a
copy of this form.

Signature o f Participant (student ID) Date

Signature of Researcher Date

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mailto:rfaux@oneota.net

www.manaraa.com

Appendix B: Data Collection Tools for COMS 102

Included here are the Demographics Survey and a condensed pretest (space for answers
removed). Additional material may be viewed at
http://www.oneota.net/~rfaux/introcs/instructor/main.htm

Materials not in this document are either exercises or test questions that may be found in
any first programming course. They have been selected as questions for which content
analysis will be made on learning. Please visit the web site if you wish to view these
materials.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.oneota.net/~rfaux/introcs/instructor/main.htm

www.manaraa.com

Demog. Coll. Student Identifier___________________________
School MSU Class Section__________
Semester Fall
Instructor -________ _____ _

This questionnaire is part of a study being conducted to identify ways instruction in
computer science can be improved. Your answers are confidential and will not effect your
grade in any way. If you are uncomfortable with any question on this form, please leave it
blank.

Gender: M /F Year in School. Fr So Jr Sr Grd Age:

Race (e.g. Native American, Caucasian, Hispanic, etc):

O f the follow ing, circle all responsibilities that apply to you.

Part-time Employment Full-time Employment Parent/Caretaker

Internship Commute

Do you have any learning disabilities that you are aware o f (e.g. dyslexia, reading, etc)? Please
identify.

Do you have any physical disabilities that may impact your learning (e.g. eyesight, motor-skills,
etc)? Please identify.

Your average grade in high school (please circle one):

A MB B B/C C C/D D

Your average grade in college (please circle one):

A A/B B B/C C C/D D

Your grade in COMS 100 (Intro to Computer Science):

A B C D F Not Applicable

Do you plan on being a Computer Science (CS or CIS) major? (rate from 1 to 5)

No Maybe Not I Don’t Know Maybe Yes Yes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Do you plan on being a Computer Science (CS or CIS) minor?

No Maybe Not I Don’t Know Maybe Yes Yes

Do you plan on being a Management Information Systems (MIS) major?

No Maybe Not I Don’t Know Maybe Yes Yes

Do you plan on being a Management Information systems (MIS) minor?

No Maybe Not I Don’t Know

Rate your level o f comfort, from 1 to 5, with computers:

Difficult to work with 1 2 3 4

Rate your level of comfort, from 1 to 5, with math:

Difficult to do 1 2 3 4 5

Rate your level of comfort, from 1 to 5, with problem solving:

Difficult to do 1 2 3 4 5

I f you have programmed before, rate your level of comfort, from 1 to 5, with programming
(don’t answer if you’ve never programmed):

Difficult to do 1 2 3 4 5 Easy to do

How useful do you think COMS 100 will be for your success in this class? (skip if no COMSIOO)

Wasted Time 1 2 3 4 5 Extremely Helpful

What were the most useful and least useful parts of the COMS 100 course to you?

What are you most looking forward to in this course?

What are you most worried about in this course?

Maybe Yes Yes

5 Easy to work with

Easy to do

Easy to do

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

pre. A Student ID ._______ _____________
School MSU Class Section__________
Semester Fall
Instructor ___________________

These questions are part of a study being conducted to identify ways instruction in computer science can be
improved. Please do your best to answer each question. Show a ll work and sketches you use to attempt to solve
the problem. I t is important to this study to see how you attempt to solve the problems. I f you use scratch paper,
please include it with this item (put your student ID on it).

1. You are given three mystery numbers, A, B and C. The only way you can learn about
these numbers is by comparing two of them. When you compare, you are told which number of
the two is bigger or if the two numbers are equal. Provide a method that will allow us to always
put the three numbers in order - only using the knowledge we get from the results of ‘compare.’

2. Provide a step by step solution that will convert a time period given in minutes to a time
period given in a combination of years, days, hours and minutes.

3. You have been given the task of programming a game of BINGO (or GO, or
CHECKERS, or CHESS - pick a game you KNOW) into a computer. Take a few minutes
and describe your strategy for attempting to program this problem. You do not need to
do any programming, just explain how you will organize your solution.

4. A traveler undertakes to walk, alone and without help, across a desert entirely lacking in
resources. Every 20 kilometers on the 100-kilometer trail there is a shelter 20
kilometers is exactly what the traveler can walk in 1 day. The traveler can only carry 3
days’ food at a time. He can stock food only at the shelters and can get food only at the
beginning or end of the desert trail. How many days does it take him to cross the desert?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix X: BSU Institutional Review Board Materials

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

many j. won, w::>i I'M 5/ju/ou -U50U, Ke: hW: 1KB Coordinator at BSU Page 1 of 1

Date: Wed, 30 Aug 2000 16:51:42 -0500 (CDT)
From: "Marty J. W olf <mjwolf@whitetail.bemidji.msus.edu>
To: Rob Faux <rfaux@oneota.net>
cc: Lee Cornell <cornell@krypton.mankato.msus.edu>
Subject: Re: FW: IRB Coordinator at BSU

I have checked and the person on our campus to check with is Joan. I
don’t even know her last name. Her number is 218 755 3732. She has all
of the forms that need to be filled out. She claims they are quite
long. :A(

You may want to try to Dean David Larkin (I think Joan in his
secretary), before proceeding with her. He can be reached at that
number, too. I may see him tonite and if I do, I will try to get him up
to speed on your project.

Rob

MJ

Regards,

Marty J. Wolf mjwolf@acm.org
Math & CS Department mjwolf@whitetail.bemidji.msus.edu
Bemidji State University Office: (218)755-2825
1500 Birchmont Drive, Box 23 Fax: (218)755-2822
Bemidji MN 56601 http://whitetaii.bemidji.msus.edu/mjwoif

Printed for Rob Faux <rfaux@oneota.net> 8/31/00

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mailto:mjwolf@whitetail.bemidji.msus.edu
mailto:rfaux@oneota.net
mailto:cornell@krypton.mankato.msus.edu
mailto:mjwolf@acm.org
mailto:mjwolf@whitetail.bemidji.msus.edu
http://whitetaii.bemidji.msus.edu/mjwoif
mailto:rfaux@oneota.net

www.manaraa.com

Appendix XI: BSU Data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

GENERAL DATA ANALYSIS SHEET

CONTROL GROUP FALL 2000
SO COURSE & HAD CS 0

p ra q ltc r p req ls ty praq lm et pr»q2scr preg2sty P fq2m «t Preq3scr prsq3»ty praq3met preq4scr preq4sty prao4mst PQ»t1 p3nols po»t4sxcomput exmath exprobsol
wrd/PicEfiL

c102
psu/wrdc103

wrd
mat/psuc105

hpic
hpicc107

c108 !S£ic109 P$u

s ill
c112

ssa.
matESS.

c11S SSL
wrd/PicBSL

C117
S U i.
c119£122.
e121
C122

wrd/Picc123 P8U P8U

count
3.224.25 JJtt 7.46

0.90 psu0.75 1.28 hpicPSU 1.67 3.61
0.54 1,550.91 2,46 3.60

•0.07 •0.40 psu/wrd psu/wrd 0,72ES. 0.05 0.87

S's

j6 Pic/wrd wrd/Pic

mat

COMPLETED but Did NOT have CS 0

DID NOT COMPLETE, but DID have CS 0
wrd/Pic

C151 P8U
_5 psu/pro hpicP8U

Psu
c164 Psu
C1SS psu/wrd.C1S6 psu

C157

3,13mean
0.83 1,30 1.52 0.38 hpic 3.27 2M
0.70

0.00 psu/wrd 0.54 0.47

wrd/Pic

R
ep

ro
du

ce
d

wi
th

pe
rm

is
si

on

of
the

co

py
rig

ht
 o

w
ne

r.
Fu

rth
er

 r
ep

ro
du

ct
io

n
pr

oh
ib

ite
d

w
ith

ou
t

pe
rm

is
si

on
.

www.manaraa.com

R
eproduced

with
perm

ission
of the

copyright ow
ner.

Further reproduction
prohibited

w
ithout perm

ission.

10 exco m pu t exm ath exprobsol exp rog e x c e l309 p re q is c r p re a is ty p re a im e t p rea2scr o re a2 s tv prea2m et prea3scr preq3sty pregSm et preq4scr p re q4 sty prea4m et DOStl p i no te P©st2 o2note POSt3 p3note post4 p4note p re to t i p re to t2 DOSttOt
111 5 4 4 4 4 3 4 psu 2 4 DSU 3 3 wrd 4 4 oic/wrd 5 DIC 2 wrd 4 pic 0 12 15 11
t12 4 3 3 2 4 3 4 PSU 3 2 mat 2 2 pic/wrd 1 2 wrd 3 2 2 oic 1 9 10 8
t13 5 5 4 4 5 1 4 D3U 4 4 DSU 1 2 wrd 4 3 wrd 1 1 1 4 wrd 10 13 7
t14 5 3 3 5 4 3 4 PSU 4 3 psu 4 3 wrd 4 3 oic/wrd 5 3 3 2 wrd 15 13 13
115 3 5 2 1 2 1 2 wrd 1 1 osu/wrd 1 1 wrd 1 0j none 5 2 2 3 4 4 12
tie 5 4 5 5 5 4 3 DSU 4 4 osu 2 2 wrd 0 1 wrd 4 4 1 3 10 10 12
t17 4 4 5 3 5 5 4 osu 2 3 PSU 2 2 wrd 3 4 Pic 5 5 1 2 12 13 13
MS 4 4 4 3 5 2 4 PSU 4 4 DSU 1 2 wrd 4 3 mat/wrd 3 1 1 1 11 13 6ns . 5 5 4 3 3 3 4 osu 3 2 mat/ osu 1 1 wrd 2 3 DIC 1 2 2 2 9 10 7
(20 5 5 5 4 4 5 4 osu 2 3 mat/wrd 2 2 oic/wrd 5 5 DIC 5 4 2 pic 1 14 14 12
t21 5 3 4 5 1 3 4 oic/osu 4 3 mat/ dsu 3 4 wrd 4 5 pic/wrd 5 5 0 2 14 16 12
(22 3 3 4 4 5 4 4 osu 2 3 mat/psu 1 3 wrd 3 1 1 pic 0 7 10 5
(23 5 4 4 4 5 2 2 wrd 1 2 Dsu/wrd 2 1 wrd 1 0 0 0 5 5 1
124 5 4 4 4 4 3 3 PSU 3 4 DSU 1 1 wrd 1 2 wrd 5 4 4 pic 3 8 10 16
(25 5 5 4 4 4 1 3 psu/wrd 4 2 psu/wrd 1 2 wrd 1 0 none 5 2 2 0 7 7 9
count 15 15 15 15 15 14 14 wrd 15 15 wrd 15 15 wrd 14 14 wrd 15 15 wrd 15 15 wrd 15 15 15
mean 4.53 4.07 3.93 3.67 4.00 2.93 3.64 1 2.93 2.93 1 1.73 2.13 12 2.57 2.57 5 3.73 2.53 1 1.73 1.60 2 9.80 10.87 9.60
stdev 0.74 0.80 0.80 1.11 1.20 1.33 0.63 PSU 1.03 0.96 DSU 0.96 0.83 Dic/wrd 1.60 1.65 DIC 1.62 DIC 1.55 1.22 pic 1.30 3.28 3.50 3.91
var 0.55 0.64 0.64 1.24 1.43 1.76 0.40 11 1.07 0.92 7 0.92 0.70 2 2.57 2.73 3 2.64 1 2.41 1.50 6 1.69 10.74 12.27 15.26
skew •1.33 -0.13 •0.84 -1.02 -1.45 -0.08 -1.69 psu/wrd -0.30 -0.41 Dsu/wrd 1.17 0.58 Dsu/wrd -0.09 -0.15 Dic/wrd -0.89 0.26 0.59 0.20 -0.10 •0.60 -0.58

1 2 1 3
5'e 10 5 3 3 6 2 0 Dic/DSU 0 0 mat/wrd 0 0 1 2 mat/wrd 8 2 0 0
4's 3 6 9 7 6 2 10 1 6 5 1 1 1 5 2 1 1 3 2 1
3's 2 4 2 3 1 6 3 3 5 mat/osu 2 3 1 4 none 3 1 1 3
2's 0 0 1 1 1 1 1 5 4 3 4 6 2 2 2 0 5 5 4
1'S 0 0 0 1 1 3 0 1 1 mat 6 3 4 2 mat 3 3 5 3

1 0

COMPLETED and did not have treatment CS 0
td 4 3 3 3 4 2 3 DSU 2 3 DSU 1 3 wrd 4 4 pic/wrd 4 2 3 0 9 13 9
tc2 5 3 4 3 3 3 3 DSU 4 4 DSU 2 3 wrd 2 1 hoic 3 3 0 2 11 11 8
tc3 3 4 4 2 2 5 3 wrd 4 3 wrd 3 3 wrd 4 3 wrd 5 3 1 2 16 12 11
count 3
mean 4.00 3.33 3.67 2.67 3.00 3.33 3.00 3.33 3.33 2.00 3.00 3.33 2.67 4.00 2.67 1.33 1.33 12.00 12.00 9.33
stdev 1.00 0.58 0.58 0.58 1.00 1.53 0.00 1.15 0.58 1.00 0.00 1.15 1.53 1.00 0.58 1.63 1.15 3.61 1.00 1.53
var 1.00 0.33 0.33 0.33 1.00 2.33 0.00 1.33 0.33 1.00 0.00 1.33 2.33 1.00 0.33 2.33 1.33 13.00 1.00 2.33
skew 0.00 1.73 ■1.73 ■1.73 0.00 0.94 #DIV/0! -1.73 1.73 0.00 #DIV/0! -1.73 -0.94 0.00 -1.73 0.94 -1.73 1.15 0.00 0.94

COMPLETED and did not have CS 0
tn1 5 l 4 } 4 | 4 | 4 4 DSU 4 4 wrd /dsu 1 3 wrd 1 3 wrd 5 2 4 4 10 14 15I I I I

DID NOT COMPLETE and did not have treat nent CS >
tc4 i I I I I 3 f 3 wrd/osu 3 3 mat 1 2 wrd 1 3 wrd 8 11

DID NOT COMPLETE and did not have CS 0
m2 1 1 mat/wrd 2 2 mat/wrd 1 1 wrd 3 4 Dic/wrd 7 8
tn3 3 3 wrd 2 2 mat 2 4 Dic/wrd 0 1 wrd 7 10
tn4 2 2 wrd/osu 2 3 DSU 2 2 wrd 2 3 Dic/wrd 8 10
tn5 2 1 wrd 1 2 wrd 2 1 wrd 5 4
count 4 4 3 3 4 4 4 4 4 4
mean 2.00 1.75 2.00 2.33 1.50 2.25 1.75 2.25 6.75 8.00
stdev 0.82 0.96 0.00 0.58 0.58 1.26 1.26 1.50 1.26 2.83
var 0.67 0.92 0.00 0.33 0.33 1.58 1.58 2.25 1.58 8.00
skew 0.00 0.85 #D!V/0! 1.73 0.00 1.13 -1.13 0.37 -1.13 -1.41

DID NOT COMPLETE and had treatment CS 0
(26 3 4 DSU _ ! 2 m at/dsu 1 3 wrd 1 3 mat/wrd 6 12
t27 3 4 psu 2 3 DSU 1 2 wrd 3 3 Die 9 12
t28 1 3 psu 4 3 psu 2 3 wrd 1 0 none 8 / 9
count 3 3 3 3 3 3 3 3 3 ‘ 3
mean 2.33 3.67 2.33 2.67 1.33 2.67 1.67 2.00 7.67 11.00
stdev 1.15 0.58 1.53 0.58 0.58 0.58 1.15 1.73 1.53 1.73
var 1.33 0.33 2.33 0.33 0.33 0.33 1.33 3.00 2.33 3.00
skew •1.73 -1-73 0.94 -1.73 1.73 -1.73 1.73 -1.73 •0.94 -1.73

www.manaraa.com

Appendix XII: BSU Data Mining Samples

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

U r 'S u P c x m s t o ^ ~]

CLASS RESEMBLANCE STATISTICS

Res. Score:
No. of Inst.

Cluster Quality:

Class 1
0.364

16
0.08

Class 2
0.405

17
0.21

DOMAIN STATISTICS FOR CATEGORICAL ATTRIBUTES
Number of Classes: 4
Domain Res. Score: 0.34

Categorical Attribute Summary: Name
group

preqlscr

preqlsty

preqlmet

preq2scr

preq2sty

preq2met

preq3scr

preq3sty

Class 3
0.432

4
0.29

/0v s
/yjo Pt>sryesT~

Class 4
0.519

2
0.54

Value Freauencv Predictat
c1 24 0.62
t 15 0.38

3 17 0.44
2 2 0.05
5 5 0.13
4 10 0.26
1 4 0.10
□ 1 0.03

2 6 0.15
4 22 0.56
3 9 0.23
5 1 0.03
□ 1 0.03

psu 24 0.62
wrd 7 0.18

psu/wrd 3 0.08
wrd/psu 1 0.03
dia/wrd 1 0.03
pic/wrd 1 0.03
pic/psu 1 0.03

1 0.03

3 14 0.36
2 6 0.15
4 11 0.28
0 1 0.03
1 3 0.08
5 4 0.10

3 18 0.46
4 13 0.33
C 1 0.03
2 5 0.13
1 2 0.05

mat 1 0.03
psu 14 0.36
wrd 4 0.10

wrd/psu 6 0.15
mat/psu 6 0.15

G 1 0.03
mat 4 0.10

mat/wrd 2 0.05
wrd 1 0.03

1 17 0.44
3 4 0.10
2 12 0.31
□ 5 0.13
4 1 0.03

2 13 0.33
3 12 0.31
0 5 0.13
1 7 0.18
4 2 0.05

Domain
0.34
39

__

/ AS/- S'fatt 3 *7

'H t / -O

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

preq3met

preq4scr

preq4sty

preq4met

postl

post2

post3

post4

gender

year

wrd 28 0.72
□ 5 0.13

pic/wrd 2 0.05
psu 2 0.05

wrd/psu 2 0.05

2 5 0.13
4 9 0.23
1 13 0.33
3 6 0.15
□ 4 0.10
0 1 0.03
5 1 0.03

1 11 0.28
4 2 0.05
0 5 0.13
2 6 0.15
3 8 0.21
□ 4 0.10
5 3 0.08

wrd/pic 5 0.13
pic/wrd 3 0.08
none 5 0.13
hpic 6 0.15
pic 5 0.13
wrd 8 0.21
mat 1 0.03
□ 4 0.10

mat/wrd 1 0.03
pic 1 0.03

4 7 0.18
5 14 0.36
2 5 0.13
0 1 0.03
3 7 0.18
1 5 0.13

4 6 0.15
2 10 0.26
1 12 0.31
0 4 0.10
3 4 0.10
5 3 0.08

2 10 0.26
4 3 0.08
1 16 0.41
0 6 0.15
3 4 0.10

2 6 0.15
0 12 0.31
1 15 0.38
4 1 0.03
3 5 0.13

M 23 0.59
F 12 0.31
□ 4 0.10

4 7 0.18
3 11 0.28
2 17 0.44
□ 2 0.05
1 2 0.05

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

age over30 3 0.08
18-22 28 0.72

□ 4 0.10
23-29 4 0.10

race C 24 0.62
□ 7 0.18

NA 1 0.03
Asian 7 0.18

HSgrade b 9 0.23
a 28 0.72
□ 1 0.03
c 1 0.03

colgrade b 16 0.41
a 19 0.49
c 3 0.08
0 1 0.03

cs1309 c 9 0.23
a 14 0.36
b 12 0.31
□ 3 0.08
d 1 0.03

DOMAIN STATISTICS FOR NUMERICAL ATTRIBUTES

Class 1 Class 2 Class 3 Class 4 Domain
pretotl (mean) 8.94 10.88 11.25 5.50 9.85

(sd) 1.77 2.15 1.26 2.12 2.33
pretot2 (mean) 9.25 11.77 9.50 5.50 10.18

(sd) 2.11 2.14 2.38 2.12 2.64
posttot (mean) 5.94 11.06 4.75 10.50 8.28

(sd) 2.65 3.17 1.50 2.12 3.83
diff both (mean) (3.16) (0.27) (5.63) 5.00 (1.73)

(sd) 2.29 3.99 2.87 4.24 3.96

MOST COMMONLY OCCURRING CATEGORICAL ATTRIBUTE VALUES
Class 1 Class 2 Class 3 Class 4

group c1 t c1 t
preqlscr 3 3 3 1
preqlsty 4 4 3 2
preqlmet psu psu wrd wrd
preq2scr 3 3 4 1
preq2sty 3 3 3 1
preq2met mat psu wrd/psu wrd/psu
preq3scr 1 1 □ 1
preq3sty 2 3 □ 1
preq3met wrd wrd □ wrd
preq4scr 1 4 3 1
preq4sty 1 3 2 0
preq4met wrd pic hpic none

postl 3 5 4 5
post2 1 4 1 2
post3 1 1 1 2
post4 1 2 0 3

gender M M M F
year 2 2 3 4
age 18-22 18-22 18-22 □
race C C C □

HSgrade a a b a
colgrade b a c a
cs1309 b a c b

Attribute
Significance

2.46

2.38

1.65

2.68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Class: 1
Total Number of Instances: 16
Class Resemblance Score: 0.36

Most Typical Instances: group prealscr prealstv
t 4 4

c1 3 4

Least Typical Instances: group preolscr prealstv
c1 4 4
t n □

Categorical Attribute Summary: Name Value Freouencv
group c1 12

t 4

preqlscr 3 7
2 2
4 4
5 1
1 1
G 1

preqlsty 2 4
3 1
4 10
□ 1

preqlmet psu 12
wrd 2

pic/wrd 1
□ 1

preq2scr 3 7
4 2
5 3
1 2
2 2

preq2sty 3 7
2 3
4 5
1 1

preq2met mat 1
wrd 2
mat 4
psu 4

wrd/psu 3
mat/psu 1

wrd 1

preq3scr 1 9
2 5
□ 2

preq3sty 2 6
3 5
1 3
□ 2

preq3met wrd 9
pic/wrd 1

psu 2
□ 2

wrd/psu 2

preq4scr 2 2
1 5
4 3

preqlmet prea2scr preq2stv
psu 2 3
psu 5 4

preqlmet prea2scr prea2stv
psu 3
□ 2

Predictability Predictiveness
0.75 0.50
0.25 0.27

0.44 0.41
0.13 1.00
0.25 0.40
0.06 0.20
0.06 0.25
0.06 1.00

0.25 0.67
0.06 0.11
0.63 0.45
0.06 1.00

0.75 0.50
0.13 0.29
0.06 1.00
0.06 1.00

0.44 0.50
0.13 0.18
0.19 0.75
0.13 0.67
0.13 0.33

0.44 0.39
0.19 0.60
0.31 0.38
0.06 0.50

0.06 1.00
0.13 0.50
0.25 1.00
0.25 0.29
0.19 0.50
0.06 0.17
0.06 1.00

0.56 0.53
0.31 0.42
0.13 0.40

0.38 0.46
0.31 0.42
0.19 0.43
0.13 0.40

0.56 0.32
0.06 0.50
0.13 1.00
0.13 0.40
0.13 1.00

0.13 0.40
0.31 0.38
0.19 0.33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<N

www.manaraa.com

preq4sty 1 6 0.38 0.55
0 2 0.13 0.40
2 1 0.06 0.17
□ 4 0.25 1.00
3 2 0.13 0.25
5 1 0.06 0.33

preq4met wrd/pic 2 0.13 0.40
none 2 0.13 0.40
wrd 5 0.31 0.63
hpic 1 0.06 0.17
mat 1 0.06 1.00
□ 4 0.25 1.00

mat/wrd 1 0.06 1.00

postl 4 2 0.13 0.29
2 4 0.25 0.80
3 6 0.38 0.86
5 1 0.06 0.07
1 3 0.19 0.60

post2 4 1 0.06 0.17
2 4 0.25 0.40
1 8 0.50 0.67
3 1 0.06 0.25
0 2 0.13 0.50

post3 2 5 0.31 0.50
0 3 0.19 0.50
1 8 0.50 0.50

post4 2 1 0.06 0.17
1 10 0.63 0.67
0 5 0.31 0.42

gender M 10 0.63 0.43
□ 3 0.19 0.75
F 3 0.19 0.25

year 4 4 0.25 0.57
3 3 0.19 0.27
2 8 0.50 0.47
□ 1 0.06 0.50

age over30 1 0.06 0.33
18-22 9 0.56 0.32
23-29 3 0.19 0.75

□ 3 0.19 0.75

race C 9 0.56 0.38
□ 3 0.19 0.43

NA 1 0.06 1.00
Asian 3 0.19 0.43

HSgrade b 3 0.19 0.33
a 11 0.69 0.39
□ 1 0.06 1.00
c 1 0.06 1.00

colgrade b 11 0.69 0.69
a 4 0.25 0.21
n 1 0.06 1.00

cs1309 c 3 0.19 0.33
b 8 0.50 0.67
□ 2 0.13 0.67
a 2 0.13 0.14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Attribute Values Necessary and
Sufficient for Class Membership:

Attribute Values Highly Sufficient
for Class Membership:

Attribute Values Highly Necessary
for Class Membership:

Numerical Value Attribute Summary:

Class:
Total Number of Instances:
Class Resemblance Score:

Most Typical Instances:

Least Typical Instances:

Categorical Attribute Summary:

0.06 1.00

Name Value

Name
preqlscr
preqlscr
preqlsty
preqlmet
preqlmet
preq2met
preq2met
preq2met
preq3met
preq3met
preq4scr
preq4sty
preq4met
preq4met
preq4met

postl
postl
race

HSgrade
HSgrade
colgrade
cs1309

Value
2

pic/wrd
□

mat
mat
wrd
psu

wrd/psu

□
mat
□

mat/wrd
2
3

NA
n

C

□
d

Name

Name
pretotl
pretot2
posttot

diff both

Value

Mean
8.938
9.25
5.938
-3.156

Standard
Deviation

1.769
2.113
2.645
2.293

2
17

0.41

aroup preqlscr Drealstv Drealmet prea2scr Drea2stv
t 3 4 psu 4 3
t 5 4 psu 2 3

aroup Drealscr Drealstv prealmet preq2scr preq2sty
c1 4 4 psu 3 3
t 3 4 pic/psu 4 3

Name Value Freauencv Predictability Predictiveness
group t 9 0.53 0.60

c1 8 0.47 0.33

preqlscr 3 8 0.47 0.47
5 3 0.18 0.60
4 5 0.29 0.50
1 1 0.06 0.25

preqlsty 4 11 0.65 0.50
5 1 0.06 1.00
3 4 0.24 0.44
2 1 0.06 0.17

preqlmet psu 12 0.71 0.50
wrd 1 0.06 0.14

psu/wrd 2 0.12 0.67
dia/wrd 1 0.06 1.00

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

preq2scr

preq2sty

preq2met

preq3scr

preq3sty

preq3met

preq4scr

preq4sty

preq4met

postl

post2

post3

pic/psu 1 0.06 1.00

2 4 0.24 0.67
3 6 0.35 0.43
□ 1 0.06 1.00
4 5 0.29 0.45
5 1 0.06 0.25

4 7 0.41 0.54
3 8 0.47 0.44
□ 1 0.06 1.00
2 1 0.06 0.20

psu 10 0.59 0.71
wrd 1 0.06 0.25
0 1 0.06 1.00

mat/psu 4 0.24 0.67
mat/wrd 1 0.06 0.50

3 3 0.18 0.75
1 6 0.35 0.35
4 1 0.06 1.00
2 6 0.35 0.50
□ 1 0.06 0.20

3 7 0.41 0.58
2 5 0.29 0.38
1 3 0.18 0.43
0 1 0.06 0.20
4 1 0.06 0.50

wrd 15 0.88 0.54
D 1 0.06 0.20

pic/wrd 1 0.06 0.50

4 6 0.35 0.67
1 5 0.29 0.38
0 1 0.06 1.00
3 1 0.06 0.17
2 3 0.18 0.60
5 1 0.06 1.00

4 2 0.12 1.00
3 6 0.35 0.75
2 2 0.12 0.33
1 5 0.29 0.45
5 2 0.12 0.67

pic/wrd 3 0.18 1.00
pic 5 0.29 1.00
hpic 2 0.12 0.33
wrd 3 0.18 0.38
pic 1 0.06 1.00

wrd/pic 3 0.18 0.60

5 10 0.59 0.71
4 4 0.24 0.57
1 2 0.12 0.40
3 1 0.06 0.14

2 3 0.18 0.30
0 1 0.06 0.25
3 3 0.18 0.75
1 2 0.12 0.17
4 5 0.29 0.83
5 3 0.18 1.00

4 3 0.18 1.00
1 6 0.35 0.38
3 4 0.24 1.00

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Attribute Values Necessary and
Sufficient for Class Membership:

Attribute Values Highly Sufficient
for Class Membership:

Attribute Values Highly Necessary
for Class Membership:

2 3 0.18
0 1 0.06

post4 0 4 0.24
4 1 0.06
2 5 0.29
3 4 0.24
1 3 0.18

gender F 7 0.41
M 10 0.59

year 3 7 0.41
2 8 0.47
4 1 0.06
1 1 0.06

age 18-22 15 0.88
over30 1 0.06
23-29 1 0.06

race C 10 0.59
□ 3 0.18

Asian 4 0.24

HSgrade a 15 0.88
b 2 0.12

colgrade a 13 0.76
b 4 0.24

cs1309 a 12 0.71
□ 1 0.06
b 2 0.12
c 2 0.12

Name Value

Name Value
preqlsty 5
preqlmet dia/wrd
preqlmet pic/psu
preq2scr □
preq2sty n
preq2met □
preq3scr 4
preq4scr 0
preq4scr 5
preq4sty 4
preq4met pic/wrd
preq4met pic
preq4met pic

post2 4
post2 5
post3 4
post3 3
post4 4
post4 2
post4 3

cs1309 a

Name Value
preq3met wrd

age 18-22
HSgrade a

0.30
0.17

0.33
1.00
0.83
0.80
0.20

0.58
0.43

0.64
0.47
0.14
0.50

0.54
0.33
0.25

0.42
0.43
0.57

0.54
0.22

0.68
0.25

0.86
0.33
0.17
0.22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Standard
Numerical Value Attribute Summary:

Class:
Total Number of Instances:
Class Resemblance Score:

Most Typical Instances:

Least Typical Instances:

Categorical Attribute Summary:

Name
pretotl
pretot2
posttot

diff both

Mean
10.882
11.765
11.059
-0.265

Deviation
2.147
2.137
3.172
3.993

3
4

0.43

group orealscr prealstv prealmet prea2scr
c1 3 3 wrd 4
c1 4 4 psu/wrd 4

group Drealscr prealstv prealmet nrea2scr
c1 5 3 wrd 3
c1 3 3 wrd 4

Name Value Freauencv Predictability Predictiveness
group c1 4 1.00 0.17

preqlscr 3 2 0.50 0.12
4 1 0.25 0.10
5 1 0.25 0.20

preqlsty 3 3 0.75 0.33
4 1 0.25 0.05

preqlmet wrd 3 0.75 0.43
psu/wrd 1 0.25 0.33

preq2scr 4 3 0.75 0.27
3 1 0.25 0.07

preq2sty 3 3 0.75 0.17
4 1 0.25 0.08

preq2met wrd/psu 1 0.25 0.17
mat/psu 1 0.25 0.17

wrd 1 0.25 0.25
mat/wrd 1 0.25 0.50

preq3scr □ 2 0.50 0.40
3 1 0.25 0.25
2 1 0.25 0.08

preq3sty q 2 0.50 0.40
4 1 0.25 0.50
2 1 0.25 0.08

preq3met □ 2 0.50 0.40
wrd 2 0.50 0.07

preq4scr 3 3 0.75 0.50
1 1 0.25 0.08

preq4sty 2 3 0.75 0.50
0 1 0.25 0.20

preq4met hpic 3 0.75 0.50
none 1 0.25 0.20

postl 4 1 0.25 0.14
0 1 0.25 1.00
2 1 0.25 0.20
5 1 0.25 0.07

post2 1 2 0.50 0.17
2 1 0.25 0.10

preo2stv
3
3

preq2sty
3
4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Attribute Values Necessary and
Sufficient for Class Membership:

Attribute Values Highly Sufficient
for Class Membership:

Attribute Values Highly Necessary
for Class Membership:

Numerical Value Attribute Summary:

Class:
Total Number of Instances:
Class Resemblance Score:

Most Typical Instances:

Least Typical Instances:

Categorical Attribute Summary:

0 1 0.25 0.25

post3 1 2 0.50 0.13
0 2 0.50 0.33

post4 0 2 0.50 0.17
1 2 0.50 0.13

gender M 2 0.50 0.09
□ 1 0.25 0.25
F 1 0.25 0.08

year 3 1 0.25 0.09
4 1 0.25 0.14
2 1 0.25 0.06
□ 1 0.25 0.50

age 18-22 3 0.75 0.11
over30 1 0.25 0.33

race C 4 1.00 0.17

HSgrade b 4 1.00 0.44

colgrade c 3 0.75 1.00
b 1 0.25 0.06

cs1309 c 4 1.00 0.44

Name Value

Name Value
postl 0

colgrade c

Name Value
group c1
race C

HSgrade b
cs1309 c

Standard
Name Mean Deviation
pretotl 11.25 1.258
pretot2 9.5 2.38
posttot 4.75 1.5
diff both -5.625 2.869

4
2

0.52

aroup prealscr Drealstv Drealmet Drea2scr
t 1 2 wrd 1
t 1 3 wrd/psu 4

aroup prealscr Drealstv Drealmet Drea2scr
t 1 2 wrd 1
t 1 3 wrd/psu 4

Name Value Freauencv Predictability Predictiveness
group t 2 1.00 0.13

preqlscr 1 2 1.00 0.50

preqlsty 2 1 0.50 0.17
3 1 0.50 0.11

preq2stv
1
2

preo2stv
1
2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

preqlmet wrd 1 0.50
wrd/psu 1 0.50

preq2scr 1 1 0.50
4 1 0.50

preq2sty 1 1 0.50
2 1 0.50

preq2met wrd/psu 2 1.00

preq3scr 1 2 1.00

preq3sty 1 1 0.50
2 1 0.50

preq3met wrd 2 1.00

preq4scr 1 2 1.00

preq4sty 0 2 1.00

preq4met none 2 1.00

postl 5 2 1.00

post2 2 2 1.00

post3 2 2 1.00

post4 3 1 0.50
0 1 0.50

gender F 1 0.50
M 1 0.50

year 4 1 0.50
1 1 0.50

age □ 1 0.50
18-22 1 0.50

race □ 1 0.50
C 1 0.50

HSgrade a 2 1.00

colgrade a 2 1.00

cs1309 b 2 1.00

Attribute Values Necessary and
Sufficient for Class Membership: Name Value

Attribute Values Highly Sufficient
for Class Membership: Name Value

preqlmet wrd/psu

Attribute Values Highly Necessary
for Class Membership: Name Value

group t
preqlscr 1
preq2met wrd/psu
preq3scr 1
preq3met wrd
preq4scr 1
preq4sty 0
preq4met none

postl 5

0.14
1.00

0.33
0.09

0.50
0.20

0.33

0.12

0.14
0.08

0.07

0.15

0.40

0.40

0.14

0.20

0.20

0.20
0.08

0.08
0.04

0.14
0.50

0.25
0.04

0.14
0.04

0.07

0.11

0.17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

post2 2
post3 2

HSgrade a
colgrade a
cs1309 b

Standard
Numerical Value Attribute Summary: Name Mean Deviation

pretotl 5.5 2.121
pretot2 5.5 2.121
posttot 10.5 2.121

diff both 5 4.243

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Rules for Class 1
16 instances

post4 = 1
:rule accuracy 66.67%
:rule coverage 62.50%

1.00 <= posttot <= 5.00
:rule accuracy 81.82%
:rule coverage 56.25%

colgrade = b
:rule accuracy 68.75%
:rule coverage 68.75%

**Total Percent Coverage = 100.00%

Rules for Class 2
17 instances

preq2met = psu
:rule accuracy 71.43%
:rule coverage 58.82%

postl = 5
:rule accuracy 71.43%
:rule coverage 58.82%

12.00 <= pretot2 <= 16.00
:rule accuracy 75.00%
:rule coverage 52.94%

9.00 <= posttot <= 16.00
:rule accuracy 76.47%
:rule coverage 76.47%

-1.50 <= d iff both <= 7.00

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

:rule accuracy 71.43%
:rule coverage 58.82%

colgrade = a
:rule accuracy 68.42%
:rule coverage 76.47%

csl309 = a
:rule accuracy 85.71%
:rule coverage 70.59%

csl309 - a
and 9.00 <= posttot <= 16.00
:rule accuracy 100.00%
:rule coverage 58.82%

**Total Percent Coverage = 100.00%

Rules for Class 3
4 instances

colgrade = c
:rule accuracy 100.00%
:rule coverage 75.00%

**Total Percent Coverage = 75.00%

Rules for Class 4
2 instances

2.00 <= diff both <= 2.00
:rule accuracy 66.67%
:rule coverage 100.00%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.00 <= pretot2 <= 4.00
and 4.00 <= pretotl <= 4.00
:rule accuracy 100.00%
:rule coverage 50.00%

** Total Percent Coverage = 100.00%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

11

Confusion Matrix < $ C Q̂ P
Computed Class J

c1 01 e' 2 |A/fliVtO SiOtli.
t 1 4

Percent Correct: 76.0%

Error: Upper Bound 47.7%
Error: Lower Bound sup

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

pr
eq

ls
cr

pr

eq
ls

ty

pr
eq

lm
et

pr

eq
2s

cr

pr
eq

2s
ty

pr

eq
2m

et

pr
eq

3s
cr

pr

eq
3s

ty

pr
eq

3m
et

pr

eq
4s

cr

pr
eq

4s
ty

pr

eq
4m

et

po
st

l
pl

no
te

po

st
2

p2
no

te

po
st

3
p3

no
te

po

st
4

p4
no

te

pr
et

ot
l

pr
et

ot
2

po
st

to
t

di
ff

bo
th

gr
ou

p
co

m
pu

te
d

cl
as

s

^ Cjj ' * r f CO

i n i o c o i o * * f t f > * - c \ i c M o w ^ - < 0

O N C 0 0 9 0) 0) N ’V (D O O i n O

cncooiON o o ^ rt r-stnco

O —C C j O O D D n a o a D D n
f O » - O f O N i * M O O O «

• r t r - O C M N N O M f

O _ Eaaaanaaanaaa
T-r-^-T-T-CMCOTriflCMT-O^

O .
O .

nGLDCiDaanaaaaa
c \ J c O L n e o (N r - ^ m m r r r o r - i n

O T5 O<D 5 13-■i. ?§l.uS?i r3scs5a?DsS
1 - l O O O l O l f l r T - CM

□ □ S i l a i i i i i
I »-T- t -CMr f r tCOCMr-

T - T - T “ (N C O W r - r - r -

to P to to ro p 2 5 ̂̂ 2.E^EEEjaEEaE§a
COCOCOTl-̂ -'t'̂ COCÔ COCM'̂

c o c o c o m T - i n L O C N T T T f C M c M c o

3 - 033 - S333 " >«33 3
. a1 a a t &&&€&&=a

T f C M ^ ' ^ - C M ^ ’ ^ - ^ - ^ ’ C M ^ - CO

C O C O ^ - l O ^ - C O C O l O C O ^ f ^ CO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CLASS RESEMBLANCE STATISTICS

Res. Score:
No. of Inst.

Class Significance:

Class c1
0.285

16
0.03

Class t
0.287

10
0.04

DOMAIN STATISTICS FOR CATEGORICAL ATTRIBUTES
Number of Classes: 2
Domain Res. Score: 0.28

Domain
0.28
26

Name Value Freauencv Predictability
group c1 16 0.62

t 10 0.38

preqlscr 3 11 0.42
2 2 0.08
5 3 0 .1 2
4 7 0.27
1 3 0 .1 2

preqlsty 2 3 0 .1 2
3 8 0.31
4 14 0.54
5 1 0.04

preqlmet psu 16 0.62
wrd 6 0.23

psu/wrd 2 0.08
wrd/psu 1 0.04
dia/wrd 1 0.04

preq2 scr 3 10 0.38
4 9 0.35
□ 1 0.04
2 3 0 .1 2
1 2 0.08
5 1 0.04

preq2sty 3 12 0.46
□ 1 0.04
4 8 0.31
2 4 0.15
1 1 0.04

preq2 met mat 1 0.04
wrd 4 0.15

wrd/psu 4 0.15
mat/psu 3 0 .1 2

□ 1 0.04
psu 11 0.42
mat 1 0.04

mat/wrd 1 0.04

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

preq3scr

preq3sty

preq3met

preq4scr

preq4sty

preq4met

postl

plnote

1 11 0.42
2 9 0.35
□ 2 0.08
3 3 0 .1 2
4 1 0.04

2 10 0.38
3 10 0.38
□ 2 0.08
1 3 0 .1 2
4 1 0.04

wrd 21 0.81
□ 2 0.08

pic/wrd 1 0.04
psu 2 0.08

2 3 0 .1 2
1 9 0.35
3 5 0.19
4 7 0.27
□ 1 0.04
0 1 0.04

1 8 0.31
0 4 0.15
2 5 0.19
3 6 0.23
4 2 0.08
□ 1 0.04

wrd/pic 2 0.08
none 4 0.15
hpic 5 0.19
pic 4 0.15

pic/wrd 2 0.08
wrd 5 0.19
mat 1 0.04
□ 1 0.04

mat/wrd 1 0.04
pic 1 0.04

4 5 0.19
2 3 0 .1 2
5 10 0.38
0 1 0.04
3 4 0.15
1 3 0 .1 2

□ 24 0.92
notcode 1 0.04

pic 1 0.04

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

post2 4 3 0 .1 2
2 8 0.31
1 7 0.27
0 3 0 .1 2
3 3 0 .1 2
5 2 0.08

p2 note □ 22 0.85
notcode 2 0.08

wrd 1 0.04
psu 1 0.04

post3 2 7 0.27
1 12 0.46
0 3 0 .1 2
3 2 0.08
4 2 0.08

p3note □ 23 0 .8 8
pic 3 0 .1 2

post4 2 4 0.15
1 11 0.42
0 6 0.23
4 1 0.04
3 4 0.15

p4note pic 1 0.04
□ 20 0.77

notcode 1 0.04
wrd 4 0.15

DOMAIN STATISTICS FOR NUMERICAL ATTRIBUTES
Attribute

Class c1 Class t Domain Significance
pretotl (mean) 10.19 9.90 10.08 0.13

(sd) 1.64 3.00 2.21
pretot2 (mean) 10.06 10.80 10.35 0.29

(sd) 1.98 3.33 2.55
posttot (mean) 7.63 9.80 8.46 0.62

(sd) 3.81 2.70 3.54
d iff both (mean) (2.50) (0.55) (1.75) 0.46

(sd) 4.31 3.96 4.21

MOST COMMONLY OCCURRING CATEGORICAL ATTRIBUTE VALUES
Class c1 Class t

group c1 t
preqlscr 3 3
preqlsty 4 4
preqlmet psu psu
preq2 scr 3 4
preq2 sty 3 4
preq2 met psu psu

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

preq3scr 1 1
preq3sty 3 2
preq3met wrd wrd
preq4scr 1 4
preq4sty 1 3
preq4met hpic wrd

postl 5 5
plnote □ □
post2 1 2
p2note □ □
post3 1 2

p3note □ □
post4 1 2

p4note □ □

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Rules for Class cl
16 instances

preq2sty = 3
:rule accuracy 83.33%
:rule coverage 62.50%

post4 = 1
:rule accuracy 81.82%
:rule coverage 56.25%

10.00 <= pretotl <= 13.00
:rule accuracy 76.92%
:rule coverage 62.50%

10.00 <= pretot2 <= 13.00
:rule accuracy 71.43%
:rule coverage 62.50%

3.00 <= posttot <= 10.00
:rule accuracy 72.22%
:rule coverage 81.25%

-9.00 <= d iff both <= -2.00
:rule accuracy 73.33%
:rule coverage 68.75%

* * Total Percent Coverage = 100.00%

Rules for Class t
10 instances

-2.50 <= d iff both <= 2.00
:rule accuracy 70.00%
:rule coverage 70.00%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

